• Title/Summary/Keyword: Concrete Equivalent Properties

Search Result 111, Processing Time 0.019 seconds

Seismic performance of RC buildings subjected to past earthquakes in Turkey

  • Inel, Mehmet;Meral, Emrah
    • Earthquakes and Structures
    • /
    • v.11 no.3
    • /
    • pp.483-503
    • /
    • 2016
  • This study aims to evaluate seismic performance of existing low and mid-rise reinforced concrete buildings by comparing their displacement capacities and displacement demands under selected ground motions experienced in Turkey as well as demand spectrum provided in 2007 Turkish Earthquake Code for design earthquake with 10% probability of exceedance in 50 years for soil class Z3. It should be noted that typical residential buildings are designed according to demand spectrum of 10% probability of exceedance in 50 years. Three RC building sets as 2-, 4- and 7-story, are selected to represent reference low-and mid-rise buildings located in the high seismicity region of Turkey. The selected buildings are typical beam-column RC frame buildings with no shear walls. The outcomes of detailed field and archive investigation including approximately 500 real residential RC buildings established building models to reflect existing building stock. Total of 72 3-D building models are constructed from the reference buildings to include the effects of some properties such as structural irregularities, concrete strength, seismic codes, structural deficiencies, transverse reinforcement detailing, and number of story on seismic performance of low and mid-rise RC buildings. Capacity curves of building sets are obtained by nonlinear static analyses conducted in two principal directions, resulting in 144 models. The inelastic dynamic characteristics are represented by "equivalent" Single-Degree-of- Freedom (ESDOF) systems using obtained capacity curves of buildings. Nonlinear time history analysis is used to estimate displacement demands of representative building models idealized with (ESDOF) systems subjected to the selected ground motion records from past earthquakes in Turkey. The results show that the significant number of pre-modern code 4- and 7-story buildings exceeds LS performance level while the modern code 4- and 7-story buildings have better performances. The findings obviously indicate the existence of destructive earthquakes especially for 4- and 7-story buildings. Significant improvements in the performance of the buildings per modern code are also obvious in the study. Almost one third of pre-modern code buildings is exceeding LS level during records in the past earthquakes. This observation also supports the building damages experienced in the past earthquake events in Turkey.

Distortional buckling calculation method of steel-concrete composite box beam in negative moment area

  • Zhou, Wangbao;Li, Shujin;Jiang, Lizhong;Huang, Zhi
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1203-1219
    • /
    • 2015
  • 'Distortional buckling' is one of the predominant buckling types that may occur in a steel-concrete composite box beam (SCCBB) under a negative moment. The key factors, which affect the buckling modes, are the torsional and lateral restraints of the bottom plate of a SCCBB. Therefore, this article investigates the equivalent lateral and torsional restraint rigidity of the bottom plate of a SCCBB under a negative moment; the results of which show a linear coupling relationship between the applied forces and the lateral and/or torsional restraint stiffness, which are not depended on the cross-sectional properties of a SCCBB completely. The mathematical formulas for calculating the lateral and torsional restraint rigidity of the bottom plate can be used to estimate: (1) the critical distortional buckling stress of SCCBBs under a negative moment; and (2) the critical distortional moment of SCCBBs. This article develops an improved calculation method for SCCBBs on an elastic foundation, which takes into account the coupling effect between the applied forces and the lateral and/or torsional restraint rigidity of the bottom plate. This article analyzes the accuracy of the following calculation methods by using 24 examples of SCCBBs: (1) the conventional energy method; (2) the improved calculation method, as it has been derived in this article; and (3) the ANSYS finite element method. The results verify that the improved calculation method, as it has been proved in this article, is more accurate and reliable than that of the current energy method, which has been noted in the references.

A Study on Economically-Efficient Binder Combination of 80MPa Ultra High Strength Concrete (경제성을 고려한 80MPa급 초고강도 콘크리트의 결합재 조합에 대한 검토)

  • Park, Chun-Jin;Koh, Kyung-Teak;Ryu, Gum-Sung;Ahn, Gi-Hong;Ahn, Sang-Ku
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.64-71
    • /
    • 2015
  • Silica fume is generally adopted as admixture for Ultra High Strength Concrete (UHSC) owing to its remarkable contribution to the strength and durability but increases significantly the fabrication cost of UHSC. Accordingly, this study investigates the replacement of silica fume by blast furnace slag (BS) and fly ash (FA) in order to lower the fabrication cost of 80MPa-UHSC. To that goal, experiment is conducted on the mix proportions of mortar in terms of its binder combination, water-to-binder ratio (W/B) and unit binder content. Based on the experimental data, a mix design of concrete is derived and its properties are verified. The results reveal that a W/B of 21% and unit binder content of $720kg/m^3$ are appropriate to achieve 80MPa-UHSC using a binder composed of 60% of OPC, 30% of BS and 10% of FA. The properties of the corresponding UHSC are seen to be satisfactory with a slump flow of 715mm and compressive strength of 97MPa at 28days. The application of the binder combination derived in this study is analyzed to reduce the cost by 50% of binder compared to the mix using silica fume while realizing equivalent performance.

Experimental Study on Coefficient of Air Convection (외기대류계수에 관한 실험적 연구)

  • Jeon, Sang-Eun;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.305-313
    • /
    • 2003
  • The setting and hardening of concrete is accompanied with nonlinear temperature distribution caused by development of hydration heat of cement. Especially at early ages, this nonlinear distribution has a large influence on the crack evolution. As a result, in order to predict the exact temperature history in concrete structures it is required to examine thermal properties of concrete. In this study, the coefficient of air convection, which presents thermal transfer between surface of concrete and air, was experimentally investigated with variables such as velocity of wind and types of form. From experimental results, the coefficient of air convection was calculated using equations of thermal equilibrium. Finally, the prediction model for equivalent coefficient of air convection including effects of velocity of wind and types of form was theoretically proposed. The coefficient of air convection in the proposed model increases with velocity of wind, and its dependance on wind velocity is varied with types of form. This tendency is due to a combined heat transfer system of conduction through form and convection to air. From comparison with experimental results, the coefficient of air convection by this model was well agreed with those by experimental results.

Determination of Convection Heat Transfer Coefficient Considering Curing Condition, Ambient Temperature and Boiling Effect (양생조건·외기온도·비등효과를 고려한 콘크리트 외기대류계수의 결정)

  • Choi Myoung-Sung;Kim Yun-Yong;Woo Sang-Kyun;Kim Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.551-558
    • /
    • 2005
  • The setting and hardening of concrete is accompanied with nonlinear temperature distribution caused by development of hydration heat of cement. Especially at early ages, this nonlinear distribution has a large influence on the crack evolution. As a result, in order to predict the exact temperature history in concrete structures it is required to examine thermal properties of concrete. In this study, the convection heat transfer coefficient which presents thermal transfer between surface of concrete and air, was experimentally investigated with variables such as velocity of wind, curing condition and ambient temperature. At initial stage, the convection heat transfer coefficient is overestimated by the evaporation quantity. So it is essential to modify the thermal equilibrium considered with the boiling effect. From experimental results, the convection heat transfer coefficient was calculated using equations of thermal equilibrium. Finally, the prediction model for equivalent convection heat transfer coefficient including effects of velocity of wind, curing condition, ambient temperature and boiling effects was theoretically proposed. The convection heat transfer coefficient in the proposed model increases with velocity of wind, and its dependance on wind velocity is varied with curing condition. This tendency is due to a combined heat transfer system of conduction through form and convection to air. From comparison with experimental results, the convection heat transfer coefficient by this model was well agreed with those by experimental results.

A multi-phase model for predicting the effective chloride migration coefficient of ITZ in cement-based materials

  • Yang, C.C.;Weng, S.H.
    • Advances in concrete construction
    • /
    • v.1 no.3
    • /
    • pp.239-252
    • /
    • 2013
  • Mortar microstructure is considered as a three-phase composite material, which is cement paste, fine aggregate and interfacial transition zone. Interfacial transition zone is the weakest link between the cement paste and fine aggregate, so it has a significant role to determine the properties of cementitious composites. In this study, specimens (w/c = 0.35, 0.45, 0.55) with various volume fractions of fine aggregate ($V_f$ = 0, 0.1, 0.2, 0.3 and 0.4) were cast and tested. To predict the equivalent migration coefficient ($M_e$) and migration coefficient of interfacial transition zone ($M_{itz}$), double-inclusion method and Mori-Tanaka theory were used to estimate. There are two stages to estimate and calculate the thickness of interfacial transition zone (h) and migration coefficient of interfacial transition zone ($M_{itz}$). The first stage, the data of experimental chloride ion migration coefficient ($M_s$) was used to calculate the equivalent migration coefficient of fine aggregate with interfacial transition zone ($M_e$) by Mori-Tanaka theory. The second stage, the thickness of interfacial transition zone (h) and migration coefficient of interfacial transition zone ($M_{itz}$) was calculated by Hori and Nemat-Nasser's double inclusion model. Between the theoretical and experimental data a comparison was conducted to investigate the behavior of interfacial transition zone in mortar and the effect of interfacial transition zone on the chloride migration coefficient, the results indicated that the numerical simulations is derived to the $M_{itz}/M_m$ ratio is 2.11~8.28. Additionally, thickness of interfacial transition zone is predicted from $10{\mu}m$, 60 to $80{\mu}m$, 70 to $100{\mu}m$ and 90 to $130{\mu}m$ for SM30, M35, M45 and M55, respectively.

A numerical and theoretical investigation on composite pipe-in-pipe structure under impact

  • Wang, Yu;Qian, Xudong;Liew, J.Y. Richard;Zhang, Min-Hong
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.1085-1114
    • /
    • 2016
  • This paper investigates the transverse impact response for ultra lightweight cement composite (ULCC) filled pipe-in-pipe structures through a parametric study using both a validated finite element procedure and a validated theoretical model. The parametric study explores the effect of the impact loading conditions (including the impact velocity and the indenter shape), the geometric properties (including the pipe length and the dimensions of the three material layers) as well as the material properties (including the material properties of the steel pipes and the filler materials) on the impact response of the pipe-in-pipe composite structures. The global impact responses predicted by the FE procedure and by the theoretical model agree with each other closely. The parametric study using the theoretical approach indicates the close relationships among the global impact responses (including the maximum impact force and the maximum global displacement) in specimens with the equivalent thicknesses, proposed in the theoretical model, for the pipe-in-pipe composite structures. In the pipe-in-pipe composite structure, the inner steel pipe, together with the outer steel pipe, imposes a strong confinement on the infilled cement composite and enhances significantly the composite action, leading to improved impact resistance, small global and local deformations.

Study on the Hydration and Strength Properties of Fly-ash Modified Cement Paste and Mortar Using a CSA and Pulp Ash (CSA 및 제지애쉬를 혼합재료 사용한 플라이애쉬 시멘트 모르타르의 수화 및 강도 특성에 관한 연구)

  • Song, Tae-Hyeob;Lee, Sea-Hyun;So, Chee-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.81-88
    • /
    • 2005
  • The fly ash has been widely used in the latest to complement the performance and economical efficiency of the concrete which uses only a normal portland cement, the pulp ash gained through the incineration of paper sludge is possible to be used as the material of concrete because it contains the properties similar to the previous fly ash in ingredients and physical characteristics. Therefore, this research has tested physical characteristics by replacing 20% of fly ash used with the paper ash to solve the problem which lowers the early strength caused when the fly ash was used. As a result, it showed that the fluidity becomes lower and the compressive strength becomes increased by using paper ash. In addition, after mixing the paper ash with the fly ash, it showed that time and heating amount of the 2nd peak of the minor heat of hydration affecting the revelation of strength was equivalent to the combination for normal portland cement, and also indicated that the compressive strength for 3 days is superior to the combination of the fly ash. Therefore, if the paper ash having a regular fineness is used, it was effective in improving the early strength of concrete used the fly ash.

  • PDF

Energy-based design base shear for RC frames considering global failure mechanism and reduced hysteretic behavior

  • Merter, Onur;Ucar, Taner
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.23-35
    • /
    • 2017
  • A nonlinear static procedure considering work-energy principle and global failure mechanism to estimate base shears of reinforced concrete (RC) frame-type structures is presented. The relative energy equation comprising of elastic vibrational energy, plastic strain energy and seismic input energy is obtained. The input energy is modified with a factor depending on damping ratio and ductility, and the energy that contributes to damage is obtained. The plastic energy is decreased with a factor to consider the reduced hysteretic behavior of RC members. Given the pre-selected failure mechanism, the modified energy balance equality is written using various approximations for modification factors of input energy and plastic energy in scientific literature. External work done by the design lateral forces distributed to story levels in accordance with Turkish Seismic Design Code is calculated considering the target plastic drift. Equating the plastic energy obtained from energy balance to external work done by the equivalent inertia forces considering, a total of 16 energy-based base shears for each frame are derived considering different combinations of modification factors. Ductility related parameters of modification factors are determined from pushover analysis. Relative input energy of multi degree of freedom (MDOF) system is approximated by using the modal-energy-decomposition approach. Energy-based design base shears are compared with those obtained from nonlinear time history (NLTH) analysis using recorded accelerograms. It is found that some of the energy-based base shears are in reasonable agreement with the mean base shear obtained from NLTH analysis.

p-Version Nonlinear Finite Element Analysis of RC Slabs Strengthened with Externally Bonded CFRP Sheets (탄소섬유보강 플라스틱시트로 외부보강된 RC 슬래브의 p-Version 비선형 유한요소 해석)

  • Cho, Jin-Goo;Park, Jin-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.1
    • /
    • pp.61-68
    • /
    • 2006
  • The p-version nonlinear finite element model has been developed to analyze the nonlinear behavior of simply supported RC slabs strengthened with carbon fiber reinforced plastic sheets. The shape function is adopted with integral of Legendre polynomials. The compression model of concrete is based on the Kupfer's yield criterion, hardening rule, and crushing condition. The cracking behavior is modeled by a smeared crack model. In this study, the fixed crack approach is adopted as being geometrically fixed in direction once generated. Each steel layer has a uniaxial behavior resisting only the axial force in the bar direction. Identical behavior is assumed fur tension and compression of steel according to the elastic modulus. The carbon fiber reinforced plastic sheets are considered as reinforced layers of equivalent thickness with uniaxial strength and rigidity properties in the present model. It is shown that the proposed model is able to adequately predicte the displacement and ultimate load of nonlinear simply supported RC slabs by a patch with respect to reinforcement ratio, thickness and angles of CFRP sheets.