• Title/Summary/Keyword: Concerted reaction

Search Result 84, Processing Time 0.026 seconds

Characteristics of the Intermediates in the Cyclization Reactions of Heterocycle-fused[1,4]oxazine Derivatives: Stepwise versus Concerted

  • Shin, Dong-Soo;Park, Jong-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2219-2225
    • /
    • 2007
  • The reaction mechanisms for the cyclizations of N-methyl-2-(2-chloropyridin-3-yloxy)acetamide to 1-methylpyrido[ 3,2-b][1,4]oxazin-2-one and 1-methyl-pyrido[2,3-b][1,4]oxazin-2-one were investigated using ab initio Hartree-Fock, second-order Moller-Plesset perturbation, single point coupled cluster with both single and double substitution, and density functional theory methods. The 5-membered spiro intermediate (2) is optimized from the cyclization of the acyclic reactants through the proton-transfer reaction, and this intermediate proceeds continuously to the 6-membered intermediate through either a stepwise or a concerted reaction. In the stepwise reaction, an N-bridge-type intermediate as a stable structure is optimized, whereas, in the concerted reaction, the O-bridge-type intermediate is not optimized.

Study of Solvent Effects in Diels-Alder Reaction through Charge Transfer Formation by Using Semi-empirical Calculations

  • Shihab, Mehdi Salih
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.1898-1904
    • /
    • 2008
  • Study of computational model of the concerted Diels-Alder reaction between 9,10-dimethyl anthracene (as donor) and tetracyanoethylene (as acceptor) in absence and in presence of aromatic solvents (benzene, mesitylene and hexamethylbenzene, as donors) using an AM1 semi-empirical method. AM1 method used to study the neutral charge transfer complex models that could be expected between donor and acceptor during the course of the concerted Diels-Alder reaction. Calculated enthalpies of reaction of the charge transfer complexes models showed physical and chemical meaning for explain the effect of aromatic solvents on the kinetic process of concerted Diels-Alder reaction that contains tetracyanoethylene.

Kinetic Study on Aminolysis of Phenyl 2-Pyridyl Carbonate in Acetonitrile: Effect of Intramolecular H-bonding Interaction on Reactivity and Reaction Mechanism

  • Song, Ji-Hyun;Lee, Jae-In;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2081-2085
    • /
    • 2014
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for the reactions of phenyl 2- pyridyl carbonate (6) with a series of cyclic secondary amines in MeCN at $25.0{\pm}0.1^{\circ}C$. The Br${\o}$nsted-type plot for the reaction of 6 is linear with ${\beta}_{nuc}$ = 0.54, which is typical for reactions reported previously to proceed through a concerted mechanism. Substrate 6 is over $10^3$ times more reactive than 2-pyridyl benzoate (5), although the reactions of 6 and 5 proceed through the same mechanism. A combination of steric hindrance, inductive effect and resonance contribution is responsible for the kinetic results. The reactions of 6 and 5 proceed through a cyclic transition state (TS) in which H-bonding interactions increase the nucleofugality of the leaving group (i.e., 2-pyridiniumoxide). The enhanced nucleofugality forces the reactions of 6 and 5 to proceed through a concerted mechanism. In contrast, the corresponding reaction of 4-nitrophenyl 2-pyridyl carbonate (7) proceeds through a stepwise mechanism with quantitative liberation of 4-nitrophenoxide ion as the leaving group, indicating that replacement of the 4-nitrophenoxy group in 7 by the PhO group in 6 changes the reaction mechanism (i.e., from a stepwise mechanism to a concerted pathway) as well as the leaving group (i.e., from 4-nitrophenoxide to 2-pyridiniumoxide). The strong electron-withdrawing ability of the 4-nitrophenoxy group in 7 inhibits formation of a H-bonded cyclic TS. The presence or absence of a H-bonded cyclic TS governs the reaction mechanism (i.e., a concerted or stepwise mechanism) as well as the leaving group (i.e., 2-pyridiniumoxide or 4-nitrophenoxide).

A Kinetic Study on Nucleophilic Substitution Reactions of Phenyl Y-Substituted-Phenyl Carbonates with Z-Substituted-Phenoxides: Effect of Modification of Nonleaving Group from Benzoyl to Phenyloxycarbonyl on Reactivity and Reaction Mechanism

  • Min, Se-Won;Kim, Min-Young;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3253-3257
    • /
    • 2012
  • Second-order rate constants for the reactions of phenyl Y-substituted-phenyl carbonates 5a-g with Z-substituted-phenoxides ($k_{Z-PhO^-}$) have been measured spectrophotometrically in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. 4-Nitrophenyl phenyl carbonate (5e) is up to 235 times more reactive than 4-nitrophenyl benzoate (4e). The Br$\o$nsted-type plot for the reactions of 5e with Z-substituted-phenoxides is linear with ${\beta}_{nuc}=0.54$, which is typical for reactions reported previously to proceed through a concerted mechanism. Hammett plots correlated with ${\sigma}^o$ and ${\sigma}^-$ constants for the reactions of 5a-f with 4-chlorophenoxide exhibit highly scattered points. In contrast, the Yukawa-Tsuno plot results in an excellent linear correlation with ${\rho}_Y=1.51$ and r = 0.52, indicating that the leaving-group departure occurs at the rate-determining step (RDS). A stepwise mechanism, in which leaving-group departure occurs at RDS, has been excluded since the incoming 4-$ClPhO^-$ is more basic and a poorer nucleofuge than the leaving Y-substituted-phenoxides. Thus, the reaction has been concluded to proceed through a concerted mechanism. Our study has shown that the modification of the nonleaving group from benzoyl to phenyloxycarbonyl causes a change in the reaction mechanism (i.e., from a stepwise mechanism to a concerted pathway) as well as an increase in the reactivity.

A Kinetic Study on Aminolysis of Benzyl 2-Pyridyl Thionocarbonate and t-Butyl 2-Pyridyl Thionocarbonate: Effects of Polarizability and Steric Hindrance on Reactivity and Reaction Mechanism

  • Kim, Min-Young;Bae, Ae Ri;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2325-2329
    • /
    • 2013
  • Second-order rate constants $k_N$ have been measured for reactions of benzyl 2-pyridyl thionocarbonate (4b) and t-butyl 2-pyridyl thionocarbonate (5b) with a series of cyclic secondary amines in MeCN at $25.0{\pm}0.1^{\circ}C$. The $k_N$ values for the reactions of 4b and 5b have been compared with those reported previously for the corresponding reactions of benzyl 2-pyridyl carbonate (4a) and t-butyl 2-pyridyl carbonate (5a) to investigate the effect of changing the electrophilic center from C=O to C=S on reactivity and reaction mechanism. The thiono compound 4b is more reactive than its oxygen analogue 4a. The Br${\o}$nsted-type plots for the reactions of 4a and 4b are linear with ${\beta}_{nuc}=0.57$ and 0.37, respectively. The reactions of 4a were previously reported to proceed through a concerted mechanism, while those of 4b in this study have been concluded to proceed through a stepwise mechanism with formation of an intermediate being the rate-determining step on the basis of the ${\beta}_{nuc}$ value of 0.37. Enhanced polarizability upon changing the C=O in 4a by C=S has been suggested to be responsible for the reactivity order and the contrasting reaction mechanisms. In contrast, the reactivity of 5a and 5b is similar, but they are much less reactive than 4a and 4b. Furthermore, the reactions of 5a and 5b have been concluded to proceed through the same mechanism (i.e., a concerted mechanism) on the basis of linear Bronsted-type plots with ${\beta}_{nuc}=0.45$ or 0.47. It has been concluded that the strong steric hindrance exerted by the t-Bu in 5a and 5b causes a decrease in their reactivity and forces the reactions to proceed through a concerted mechanism.

Kinetics and Mechanism of Nucleophilic Displacement Reactions of Y-Substituted Phenyl Benzoates with Cyanide Ion

  • Kim, Song-I;Kim, Eun-Hee;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.3
    • /
    • pp.689-693
    • /
    • 2010
  • Second-order rate constants ($k_{CN^-}$) have been measured for nucleophilic substitution reactions of Y-substituted phenyl benzoates (1a-r) with $CN^-$ ion in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. The Br${\o}$nsted-type plot is linear with ${\beta}_{1g}$ = -0.49, a typical ${\beta}_{1g}$ value for reactions reported to proceed through a concerted mechanism. Hammett plots correlated with ${\sigma}^{\circ}$ and ${\sigma}^-$ constants exhibit many scattered points. In contrast, the Yukawa-Tsuno plot for the same reaction exhibits excellent linearity with ${\rho}_Y$ = 1.37 and r = 0.34, indicating that a negative charge develops partially on the oxygen atom of the leaving aryloxide in the rate-determining step (RDS). Although two different mechanisms are plausible (i.e., a concerted mechanism and a stepwise pathway in which expulsion of the leaving group occurs at the RDS), the reaction has been concluded to proceed through a concerted mechanism on the basis of the magnitude of ${\beta}_{1g}$ and ${\rho}_Y$ values.

Kinetics and Mechanism of Alkaline Hydrolysis of Y-Substituted Phenyl Phenyl Carbonates

  • Kim, Song-I;Hwang, So-Jeong;Jung, Eun-Mi;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.2015-2018
    • /
    • 2010
  • Second-order rate constants $(k_{OH^-})$ have been measured spectrophotometrically for alkaline hydrolysis of Y-substituted phenyl phenyl carbonates (2a-j) and compared with the $k_{OH^-}$ values reported previously for the corresponding reactions of Y-substituted phenyl benzoates (1a-j). Carbonates 2a-j are 8~16 times more reactive than benzoates 1a-j. The Hammett plots correlated with $\sigma^-$ and $\sigma^o$ constants exhibit many scattered points, while the Yukawa-Tsuno plot results in excellent linear correlation with $\rho$ = 1.21 and $\gamma$ = 0.33. Thus, the reaction has been concluded to proceed through a concerted mechanism in which expulsion of the leaving group is advanced only a little. However, one cannot exclude a possibility that the current reaction proceeds through a forced concerted mechanism with a highly unstable intermediate.

Aminolysis of Benzyl 4-Pyridyl Carbonate in Acetonitrile: Effect of Modification of Leaving Group from 2-Pyridyloxide to 4-Pyridyloxide on Reactivity and Reaction Mechanism

  • Bae, Ae-Ri;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2719-2723
    • /
    • 2012
  • A kinetic study is reported for nucleophilic substitution reactions of benzyl 4-pyridyl carbonate 6 with a series of alicyclic secondary amines in MeCN. The plot of pseudo-first-order rate constant ($k_{obsd}$) vs. [amine] curves upward, which is typical for reactions reported previously to proceed through a stepwise mechanism with two intermediates (i.e., a zwitterionic tetrahedral intermediate $T^{\pm}$ and its deprotonated form $T^-$). Dissection of $k_{obsd}$ into the second- and third-order rate constants (i.e., $Kk_2$ and $Kk_3$, respectively) reveals that $Kk_3$ is significantly larger than $Kk_2$, indicating that the reactions proceed mainly through the deprotonation pathway (i.e., the $k_3$ process) in a high [amine] region. This contrasts to the recent report that the corresponding aminolysis of benzyl 2-pyridyl carbonate 5 proceeds through a forced concerted mechanism. An intramolecular H-bonding interaction was suggested to force the reactions of 5 to proceed through a concerted mechanism, since it could accelerate the rate of leaving-group expulsion (i.e., an increase in $k_2$). However, such H-bonding interaction, which could increase $k_2$, is structurally impossible for the reactions of 6. Thus, presence or absence of an intramolecular H-bonding interaction has been suggested to be responsible for the contrasting reaction mechanisms (i.e., a forced concerted mechanism for the reaction of 5 vs. a stepwise mechanism with $T^{\pm}$ and $T^-$ as intermediates for that of 6).

Kinetics and Mechanism of the Aminolysis of O-Methyl S-Aryl Thiocarbonates in Acetonitrile

  • Oh, Hyuck-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1539-1542
    • /
    • 2011
  • The aminolysis of O-methyl S-aryl thiocarbonates with benzylamines are studied in acetonitrile at -45.0$^{\circ}C$. The ${\beta}_X$(${\beta}_{nuc}$) values are in the range 0.62-0.80 with a negative cross-interaction constant, ${\rho}_{XZ}$ = -0.42, which are interpreted to indicate a concerted mechanism. The kinetic isotope effects involving deuterated benzylamine nucleophiles ($XC_6H_4CH_2ND_2$) are large, $k_H/k_D$ = 1.29-1.75, suggesting that the N-H(D) bond is partially broken in the transition state by forming a hydrogen-bonded four-center cyclic structure. The concerted mechanism is enforced by the strong push provided by the MeO group which enhances the nucleofugalities of both benzylamine and arenethiolate from the putative zwitterionic tetrahedral intermediate.

Concerted Asynchronous Proton Transfer in H-Bonding Relay Model: An Implication of Green Fluorescent Protein

  • Kang, Baotao;Karthikeyan, S.;Jang, Du-Jeon;Kim, Heeyoung;Lee, Jin Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.1961-1966
    • /
    • 2013
  • Theoretical investigations have been performed for the ground state ($S_0$) and the first excited state ($S_1$) of the hydrogen bonded green fluorescent protein (GFP) model. The potential energy surface (PESs) of $S_0$ was obtained by B3LYP method and that of $S_1$ was obtained by CIS method. Based on the relative stabilities of species and the energy barriers for the proton transfer, it was found that proton transfer could take place both under the ground state and the first excited state. As determined by the proton motions along the reaction coordinate, both the ground state proton transfer (GSPT) and the excited state proton transfer (ESPT) are considered as a concerted and asynchronous process.