• Title/Summary/Keyword: Concept-Based Image Retrieval

Search Result 17, Processing Time 0.03 seconds

Text-based Image Indexing and Retrieval using Formal Concept Analysis

  • Ahmad, Imran Shafiq
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.3
    • /
    • pp.150-170
    • /
    • 2008
  • In recent years, main focus of research on image retrieval techniques is on content-based image retrieval. Text-based image retrieval schemes, on the other hand, provide semantic support and efficient retrieval of matching images. In this paper, based on Formal Concept Analysis (FCA), we propose a new image indexing and retrieval technique. The proposed scheme uses keywords and textual annotations and provides semantic support with fast retrieval of images. Retrieval efficiency in this scheme is independent of the number of images in the database and depends only on the number of attributes. This scheme provides dynamic support for addition of new images in the database and can be adopted to find images with any number of matching attributes.

An Extended Concept-based Image Retrieval System : E-COIRS (확장된 개념 기반 이미지 검색 시스템)

  • Kim, Yong-Il;Yang, Jae-Dong;Yang, Hyoung-Jeong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.3
    • /
    • pp.303-317
    • /
    • 2002
  • In this paper, we design and implement E-COIRS enabling users to query with concepts and image features used for further refining the concepts. For example, E-COIRS supports the query "retrieve images containing black home appliance to north of reception set. "The query includes two types of concepts: IS-A and composite. "home appliance"is an IS-A concept, and "reception set" is a composite concept. For evaluating such a query. E-COIRS includes three important components: a visual image indexer, thesauri and a query processor. Each pair of objects in an mage captured by the visual image indexer is converted into a triple. The triple consists of the two object identifiers (oids) and their spatial relationship. All the features of an object is referenced by its old. A composite concept is detected by the triple thesaurus and IS-A concept is recolonized by the fuzzy term thesaurus. The query processor obtains an image set by matching each triple in a user with an inverted file and CS-Tree. To support efficient storage use and fast retrieval on high-dimensional feature vectors, E-COIRS uses Cell-based Signature tree(CS-Tree). E-COIRS is a more advanced content-based image retrieval system than other systems which support only concepts or image features.

A Data Type for Concept-Based Retrieval against Image Databases Indefinitely Indexed (불확정적으로 색인된 이미지 데이터베이스를 개념 기반으로 검색하기 위한 자료형)

  • Yang, Jae-Dong
    • Journal of KIISE:Databases
    • /
    • v.29 no.1
    • /
    • pp.27-33
    • /
    • 2002
  • There are two significant drawbacks in triple image indexing; one is that is cannot support concept-based image retrieval and the other is that it fails to allow disjunctive labeling of images. To remedy the drawbacks, we propose a new technique supporting a concept-based retrieval against images indexed by indefinite fuzzy triples (I-fuzzy triples). The I-fuzzy triples allow not only a disjunctive image labeling, but also a concept-based matching against images labeled disjunctively. The disjunctive labeling is based on the expended closed world assumption and the concept-based image retrieval is based on fuzzy matching. In this paper, we also propose a concept-based query evaluation against the image database to extract desired answers with the degree of certainty $\alpha$$\in$[1,0].

A Systematic Review on Concept-based Image Retrieval Research (체계적 분석 기법을 이용한 의미기반 이미지검색 분야 고찰에 관한 연구)

  • Chung, EunKyung
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.25 no.4
    • /
    • pp.313-332
    • /
    • 2014
  • With the increased creation, distribution, and use of image in context of the development of digital technologies and internet, research endeavors have accumulated drastically. As two dominant aspects of image retrieval have been considered content-based and concept-based image retrieval, concept-based image retrieval has been focused in the field of Library and Information Science. This study aims to systematically review the accumulated research of image retrieval from the perspective of LIS field. In order to achieve the purpose of this study, two data sets were prepared: a total of 282 image retrieval research papers from Web of Science, and a total of 35 image retrieval research from DBpia in Kore for comparison. For data analysis, systematic review methodology was utilized with bibliographic analysis of individual research papers in the data sets. The findings of this study demonstrated that two sub-areas, image indexing and description and image needs and image behavior, were dominant. Among these sub-areas, the results indicated that there were emerging areas such as collective indexing, image retrieval in terms of multi-language and multi-culture environments, and affective indexing and use. For the user-centered image retrieval research, college and graduate students were found prominent user groups for research while specific user groups such as medical/health related users, artists, and museum users were found considerably. With the comparison with the distribution of sub-areas of image retrieval research in Korea, considerable similarities were found. The findings of this study expect to guide research directions and agenda for future.

Design and Implementation of Domain Ontology to Overcome Conceptual Heterogeneity in Annotation-based Image Retrieval (주석기반 이미지 검색에서 개념적 이질성 극복을 위한 도메인 온톨로지 설계 및 구현)

  • Kim Won-Pil;Kim Pan-Koo
    • Journal of Internet Computing and Services
    • /
    • v.4 no.4
    • /
    • pp.1-8
    • /
    • 2003
  • As the multimedia information retrieval system is advanced, the study of multimedia information retrieval is changing the method of low-level content based image retrieval to the semantical concept based retrieval. in this paper, we apply the theory of ontology to overcome the conceptual heterogeneity in the annotation based image retrieval. And we solve the some problems that happen when the ontology apply. As a result of our study, we try to apply the domain ontology to settle the conceptual heterogenity. In the experimental result, we knew that the semantic distance among the words is pretty dose when we apply the domain ontology than the wordnet. And in this paper, we show the possibility of the semantic image retrieval as we apply the domain ontology in the annotation based image retrieval.

  • PDF

Image Retrieval with Fuzzy Triples to Support Inexact and Concept-based Match (근사 정합과 개념 기반 정합을 지원하는 퍼지 트리플 기반 이미지 검색)

  • Jeong, Seon-Ho;Yang, Jae-Dong;Yang, Hyeong-Jeong
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.8
    • /
    • pp.964-973
    • /
    • 1999
  • 본 논문에서는 퍼지 트리플을 사용하는 내용 기반 이미지 검색 방법을 제안한다. 이미지 내 객체들 사이의 공간 관계는 내용 기반 이미지 검색을 위해 사용되는 주요한 속성들 중의 하나이다. 그러나, 기존의 트리플을 이용한 이미지 검색 시스템들은 개념 기반 검색 방법을 지원하지 못하고, 방향들 사이의 근사 정합을 처리하지 못하는 문제점을 가지고 있다. 이 문제를 해결하기 위하여 본 논문에서는 개념 기반 정합과 근사 정합을 지원하는 퍼지 트리플을 이용한 이미지 검색 방법을 제안한다. 개념 기반 정합을 위해서는 퍼지 소속성 집합으로 이루어진 시소러스가 사용되며, 근사 정합을 위해서는 방향들 사이의 관계를 정량화 하기 위한 k-weight 함수가 각각 이용된다. 이 두 가지 정합은 퍼지 트리플 간의 퍼지 정합을 통하여 균일하게 지원될 수 있다. 본 논문에서는 또한, 개념 기반 정합과 근사 정합에 대한 검색 효과를 정량적으로 평가하는 작업을 수행한다. Abstract This paper proposes an inexact and a concept-based image match technique based on fuzzy triples. The most general method adopted to index and retrieve images based on this spatial structure may be triple framework. However, there are two significant drawbacks in this framework; one is that it can not support a concept-based image retrieval and the other is that it fails to deal with an inexact match among directions. To compensate these problems, we develope an image retrieval technique based on fuzzy triples to make the inexact and concept-based match possible. For the concept-based match, we employ a set of fuzzy membership functions structured like a thesaurus, whereas for the inexact match, we introduce k-weight functions to quantify the similarity between directions. In fuzzy triples, the two facilities are uniformly supported by fuzzy matching. In addition, we analyze the retrieval effectiveness of our framework regarding the degree of the conceptual matching and the inexact matching.

An interactive image retrieval system: from symbolic to semantic

  • Lan Le Thi;Boucher Alain
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.427-434
    • /
    • 2004
  • In this paper, we present a overview of content-based image retrieval (CBIR) systems: its results and its problems. We propose our CBIR system currently based on color and texture. From the CBIR systems. we discuss the way to add semantic values in image retrieval systems. There are 3 ways for adding them: concept definition, machine learning and man-machine interaction. Along with this we introduce our preliminary results and discuss them in the goal of reaching semantic retrieval. Different result representation schemes are presented. At last, we present our work to build a complete annotated image database and our image annotaion program.

  • PDF

Design and Implementation of a COncept-based Image Retrieval System: COIRS (개념 기반 이미지 정보 검색 시스템 COIRS의 설계 및 구현)

  • Yang, Hyung-Jeong;Kim, Ho-Young;Yang, Jae-Dong;Hur, Dae-Young
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.12
    • /
    • pp.3025-3035
    • /
    • 1998
  • In this paper, we describe the design and implementationof COIRS COncept,based Image Retricval System). It differs from extant content-based image retrieval systems in that it enables users to query based on concepts- it allows users to get images concepmally relevant. A concept is basically an aggregation of promitive objects in an image. For such a cencept based image retrieval functionality. COIRS aglopts an image descriptor called triple and includes a triple thesaurus used for capturing concepts. There are four facilities in COIRS: a visual image indeses a triple thesaurus, an inverted fiel, and a user query interface. The visnal image indeser facilitates object laeling and the percification of positionof objects. It is an assistant tool designed to minimize manual work when indexing images. The thesarrus captires the concepts by analyzing triples, thereby extracting image semantics. The triples are then for formalating queries as well as indexing images. The user query interiare enables users to formulate...

  • PDF

Relevance Feedback using Region-of-interest in Retrieval of Satellite Images (위성영상 검색에서 사용자 관심영역을 이용한 적합성 피드백)

  • Kim, Sung-Jin;Chung, Chin-Wan;Lee, Seok-Lyong;Kim, Deok-Hwan
    • Journal of KIISE:Databases
    • /
    • v.36 no.6
    • /
    • pp.434-445
    • /
    • 2009
  • Content-based image retrieval(CBIR) is the retrieval technique which uses the contents of images. However, in contrast to text data, multimedia data are ambiguous and there is a big difference between system's low-level representation and human's high-level concept. So it doesn't always mean that near points in the vector space are similar to user. We call this the semantic-gap problem. Due to this problem, performance of image retrieval is not good. To solve this problem, the relevance feedback(RF) which uses user's feedback information is used. But existing RF doesn't consider user's region-of-interest(ROI), and therefore, irrelevant regions are used in computing new query points. Because the system doesn't know user's ROI, RF is proceeded in the image-level. We propose a new ROI RF method which guides a user to select ROI from relevant images for the retrieval of complex satellite image, and this improves the accuracy of the image retrieval by computing more accurate query points in this paper. Also we propose a pruning technique which improves the accuracy of the image retrieval by using images not selected by the user in this paper. Experiments show the efficiency of the proposed ROI RF and the pruning technique.

Region-Based Image Retrieval System using Spatial Location Information as Weights for Relevance Feedback (공간 위치 정보를 적합성 피드백을 위한 가중치로 사용하는 영역 기반 이미지 검색 시스템)

  • Song Jae-Won;Kim Deok-Hwan;Lee Ju-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.4 s.42
    • /
    • pp.1-7
    • /
    • 2006
  • Recently, studies of relevance feedback to increase the performance of image retrieval has been activated. In this Paper a new region weighting method in region based image retrieval with relevance feedback is proposed to reduce the semantic gap between the low level feature representation and the high level concept in a given query image. The new weighting method determines the importance of regions according to the spatial locations of regions in an image. Experimental results demonstrate that the retrieval quality of our method is about 18% in recall better than that of area percentage approach. and about 11% in recall better than that of region frequency weighted by inverse image frequency approach and the retrieval time of our method is a tenth of that of region frequency approach.

  • PDF