• Title/Summary/Keyword: Concept drift

Search Result 78, Processing Time 0.026 seconds

Effects of uncertainties on seismic behaviour of optimum designed braced steel frames

  • Hajirasouliha, Iman;Pilakoutas, Kypros;Mohammadi, Reza K.
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.317-335
    • /
    • 2016
  • Concentrically braced steel frames (CBFs) can be optimised during the seismic design process by using lateral loading distributions derived from the concept of uniform damage distribution. However, it is not known how such structures are affected by uncertainties. This study aims to quantify and manage the effects of structural and ground-motion uncertainty on the seismic performance of optimum and conventionally designed CBFs. Extensive nonlinear dynamic analyses are performed on 5, 10 and 15-storey frames to investigate the effects of storey shear-strength and damping ratio uncertainties by using the Monte Carlo simulation method. For typical uncertainties in conventional steel frames, optimum design frames always exhibit considerably less inter-storey drift and cumulative damage compared to frames designed based on IBC-2012. However, it is noted that optimum structures are in general more sensitive to the random variation of storey shear-strength. It is shown that up to 50% variation in damping ratio does not affect the seismic performance of the optimum design frames compared to their code-based counterparts. Finally, the results indicate that the ground-motion uncertainty can be efficiently managed by optimizing CBFs based on the average of a set of synthetic earthquakes representing a design spectrum. Compared to code-based design structures, CBFs designed with the proposed average patterns exhibit up to 54% less maximum inter-storey drift and 73% less cumulative damage under design earthquakes. It is concluded that the optimisation procedure presented is reliable and should improve the seismic performance of CBFs.

Beam-Column Connection with 1200mm Deep Multi-Reduced Taper Beam for Intermediate Moment Frame (깊이 1200mm급 변단면보의 중간모멘트골조용 내진접합부 개발)

  • Jung, Si-Hwa;Alemayehe, Robel Wondimu;Park, Man-Woo;Ju, Young-Kyu
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.4
    • /
    • pp.135-146
    • /
    • 2019
  • Deep beam has high section modules compared with shallow beam of the same weight. However, deep beam has low rotational capacity and high possibility of brittle failure so it is not possible to apply deep beams with a long span to intermediate moment frames, which should exhibit a ductility of 0.02rad of a story drift angle of steel moment frames. Accordingly, KBC and AISC limit the beam depth for intermediate and special moment frame to 750mm and 920mm respectively. The purpose of this paper is to improve the seismic performance of intermediate moment frame with 1200mm depth beam. In order to enhance vulnerability of plastic deformation capacity of deeper beam, Multi-Reduced Taper Beam(MRTB) shape that thickness of beam flange is reinforced and at the same time some part of the beam flange width is weakened are proposed. Based on concept of multiple plastic hinge, MRTB is intended to satisfy the rotation requirement for intermediate moment frame by dividing total story drift into each hinge and to prevent the collapse of the main members by inducing local buckling and fracture at the plastic hinge location far away from connection. The seismic performance of MRTB is evaluated by cyclic load test with conventional connections type WUF-W, RBS and Haunch. Some of the proposed MRTB connection satisfies connection requirements for intermediate moment frame and shows improved the seismic performance compared to conventional connections.

Two-Dimensional Numerical Simulation of GaAs MESFET Using Control Volume Formulation Method (Control Volume Formulation Method를 사용한 GaAs MESFET의 2차원 수치해석)

  • Son, Sang-Hee;Park, Kwang-Mean;Park, Hyung-Moo;Kim, Han-Gu;Kim, Hyeong-Rae;Park, Jang-Woo;Kwack, Kae-Dal
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.1
    • /
    • pp.48-61
    • /
    • 1989
  • In this paper, two-dimensional numerical simulation of GaAs MESFFT with 0.7${\mu}m$ gate length is perfomed. Drift-diffusion model which consider that mobility is a function of local electric field, is used. As a discretization method, instead of FDM (finite difference method) and FEM (finite element method), the Control-Volume Formulation (CVF) is used and as a numerical scheme current hybrid scheme or upwind scheme is replaced by power-law scheme which is very approximate to exponential scheme. In the process of numerical analysis, Peclet number which represents the velocity ratio of drift and diffusion, is introduced. And using this concept a current equation which consider numerical scheme at the interface of control volume, is proposed. The I-V characteristics using the model and numerical method has a good agreement with that of previous paper by others. Therefore, it is confined that it may be useful as a simulator for GaAs MESFET. Besides I-V characteristics, the mechanism of both velocity saturation in drift-diffusion model is described from the view of velocity and electric field distribution at the bottom of the channel. In addition, the relationship between the mechanism and position of dipole and drain current, are described.

  • PDF

The Application of Load Re-configuration Using Genetic Algorithm for the Distribute Systems Mischance (배전계통 사고시 부하절체 방법의 GA 적용에 관한 연구)

  • Choi, Dae-Seub;Sin, Ho-Chul
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.115-123
    • /
    • 2011
  • Distribution system loss minimization re-configuration is 0-1 planning problem, and the number of combinations requiring searches is extremely large when dealing with typical system scales. For this reason, the application of a genetic algorithm (GA) seems a tractive to solve this problem. Although Genetic algorithms are a type of random number search method, they incorporate a multi-point search feature and are therefore superior to one-point search techniques. The incorporate of GAs for solving large combinational problem has received wide attention. Further, parallel searching can be performed and the optimal solution is more easily reach ed. In this paper, for improving GA convergence characteristics in the distribution system loss minimization re-configuration problem, a chromosome "Limited Life" concept is introduced. Briefly, considering the population homogenization and genetic drift problems, natural selection is achieved by providing this new concept, in addition to natural selection by fitness. This is possible because individuals in a population have an age value. Simulation were carried out using a model system to check this method's validity.

Damage and deformation of new precast concrete shear wall with plastic damage relocation

  • Dayang Wang;Qihao Han;Shenchun Xu;Zhigang Zheng;Quantian Luo;Jihua Mao
    • Steel and Composite Structures
    • /
    • v.48 no.4
    • /
    • pp.385-403
    • /
    • 2023
  • To avoid premature damage to the connection joints of a conventional precast concrete shear wall, a new precast concrete shear wall system (NPSW) based on a plastic damage relocation design concept was proposed. Five specimens, including one monolithic cast-in-place concrete shear wall (MSW) as a reference and four NPSWs with different connection details (TNPSW, INPSW, HNPSW, and TNPSW-N), were designed and tested by lateral low-cyclic loading. To accurately assess the damage relocation effect and quantify the damage and deformation, digital image correlation (DIC) and conventional data acquisition methods were used in the experimental program. The concrete cracking development, crack area ratio, maximum residual crack width, curvature of the wall panel, lateral displacement, and deformed shapes of the specimens were investigated. The results showed that the plastic damage relocation design concept was effective; the initial cracking occurred at the bottom of the precast shear wall panel (middle section) of the proposed NPSWs. The test results indicated that the crack area ratio and the maximum residual crack width of the NPSWs were less than those of the MSW. The NPSWs were deformed continuously; significant distortions did not occur in their connection regions, demonstrating the merits of the proposed NPSWs. The curvatures of the middle sections of the NPSWs were lower than that of the MSW after a drift ratio of 0.5%. Among the NPSWs, HNPSW demonstrated the best performance, as its crack area ratio, concrete damage, and maximum residual crack width were the lowest.

Method of Determination of Seismic Design Parameters for the Next Generation of Design Provisions (차세대 내진 설계 규준을 위한 계수 결정 방법)

  • 한상환;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.88-96
    • /
    • 1995
  • Seismic design provisions in Korea has developed based on seismic provisions in United States (e.g., ATC 3-06). Current seismic design provisions in U .S. is moving toward adopting enhanced concept for design. Federal Emergence Management Agency (FEMA) Provides the NEHRP recommended Provisions for the Development of Seismic Regulations for New Buildings which can be used as a source document for use by any interested members of the building community. Current seismic design provisions in U .S. generally use a uni-level force. These provisions can not be satisfied if the limit state design is concerned. Limit state can be defined as a state causing undesirable performance o( a structure (e .g., serviceability, ultimate, buckling, etc.). Even if there are provision for controlling drift by two levels, it is still difficult to satisfy limit states using uni-level force. Architectural Institute of Japan (AIJ) uses a hi-level forces Int seismic loadings which can satisfy serviceability and ultimate limit state. However, the seismic parameters used in AIJ guideline are basically determined by subjective manner of code committee member and professions. These parameters need to be determined based on target quantities (target reliability, target energy dissipation, target displacement, target stress level, etc.). This study develops the method to determine the sesmic design parameters based on a certain taget level. Reliability is used as a target level and load factors in ANSI/ASCE 7-88 are selected as design parameters to be determined.

  • PDF

Coherent fiber-optic intrusion sensor for long perimeters monitoring

  • Choi Kyoo Nam
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.876-879
    • /
    • 2004
  • The buried fiber optic cable as a distributed intrusion sensor for detecting and locating intruders along the long perimeters is proposed. Phase changes resulting from either the pressure of the intruder on the ground immediately above the buried fiber or from seismic disturbances in the vicinity are sensed by a phase-sensitive optical time-domain reflectometer. Light pulses from a Er:fiber cw laser with a narrow, <3kHz-range, spectral width and a frequency drift of < 1 MHz/min are injected into one end of the fiber, and the backscattered light from the fiber is monitored with a photodetector. Results of preliminary studies, measurement of phase changes produced by pressure and seismic disturbances in buried fiber optic cables and simulation of ${\varphi}-OTDR$ response over long fiber paths, to establish the feasibility of the concept are described. The field experiments indicate adequate phase changes, more than 1t-rad, are produced by intruders on foot and vehicle for burial depths in the 0.2 m to 1 m range in sand, clay and fine gravel soils. The simulations predict a range of 10 km with 35 m range resolution and 30 km with 90 m range resolution. This technology could in a cost-effective manner provide enhanced perimeter security.

  • PDF

Optimization of the seismic performance of masonry infilled R/C buildings at the stage of design using artificial neural networks

  • Kostinakis, Konstantinos G.;Morfidis, Konstantinos E.
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.295-309
    • /
    • 2020
  • The construction of Reinforced Concrete (R/C) buildings with unreinforced masonry infills is part of the traditional building practice in many countries with regions of high seismicity throughout the world. When these buildings are subjected to seismic motions the presence of masonry infills and especially their configuration can highly influence the seismic damage state. The capability to avoid configurations of masonry infills prone to seismic damage at the stage of initial architectural concept would be significantly definitive in the context of Performance-Based Earthquake Engineering. Along these lines, the present paper investigates the potential of instant prediction of the damage response of R/C buildings with various configurations of masonry infills utilizing Artificial Neural Networks (ANNs). To this end, Multilayer Feedforward Perceptron networks are utilized and the problem is formulated as pattern recognition problem. The ANNs' training data-set is created by means of Nonlinear Time History Analyses of 5 R/C buildings with a large number of different masonry infills' distributions, which are subjected to 65 earthquakes. The structural damage is expressed in terms of the Maximum Interstorey Drift Ratio. The most significant conclusion which is extracted is that the ANNs can reliably estimate the influence of masonry infills' configurations on the seismic damage level of R/C buildings incorporating their optimum design.

Extraction of Threshold Voltage for Junctionless Double Gate MOSFET (무접합 이중 게이트 MOSFET에서 문턱전압 추출)

  • Jung, Hak Kee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.3
    • /
    • pp.146-151
    • /
    • 2018
  • In this study, we compared the threshold-voltage extraction methods of accumulation-type JLDG (junctionless double-gate) MOSFETs (metal-oxide semiconductor field-effect transistors). Threshold voltage is the most basic element of transistor design; therefore, accurate threshold-voltage extraction is the most important factor in integrated-circuit design. For this purpose, analytical potential distributions were obtained and diffusion-drift current equations for these potential distributions were used. There are the ${\phi}_{min}$ method, based on the physical concept; the linear extrapolation method; and the second and third derivative method from the $I_d-V_g$ relation. We observed that the threshold-voltages extracted using the maximum value of TD (third derivatives) and the ${\phi}_{min}$ method were the most reasonable in JLDG MOSFETs. In the case of 20 nm channel length or more, similar results were obtained for other methods, except for the linear extrapolation method. However, when the channel length is below 20 nm, only the ${\phi}_{min}$ method and the TD method reflected the short-channel effect.

Adaptive Control for Lateral Motion of an Unmanned Ground Vehicle using Neural Networks (신경망을 활용한 무인차량의 횡방향 적응 제어)

  • Shin, Jongho;Huh, Jinwook;Choe, Tokson;Kim, Chonghui;Joo, Sanghyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.11
    • /
    • pp.998-1003
    • /
    • 2013
  • This study proposes an adaptive control algorithm for lateral motion of a UGV (Unmanned Ground Vehicle) using an NN (Neural Networks). The lateral motion of the UGV can be corrupted with various uncertainties such as side slip. In order to compensate the performance degradation of the UGV under various uncertainties, an NN-based adaptive control is designed by utilizing a virtual control concept. Since both the drift and input gain terms are uncertain, the proposed method adapts the whole terms related to the difference between the nominal and real systems. To avoid a singularity problem with the adaptive control, the affine property of the UGV dynamic model is utilized and the overall closed-loop stability is analyzed rigorously. Finally, numerical simulations using Carsim are performed to validate the effectiveness of the proposed scheme.