• Title/Summary/Keyword: Concentration of pore water

Search Result 280, Processing Time 0.032 seconds

Controlling Water Splitting Characteristics of Anion-Exchange Membranes by Coating Imidazolium Polymer (이미다졸륨 고분자 코팅을 통한 음이온교환막의 물분해 특성 제어)

  • Kim, Do-Hyeong;Park, Jin-Soo;Kang, Moon-Sung
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.152-161
    • /
    • 2015
  • In this study, novel pore-filled anion-exchange membranes (PFAEMs) with low electrical resistance, high permselectivity, and low water-splitting flux property under a concentration polarization condition have been developed for the enhancement in the efficiency of electrochemical water treatment processes. The base membranes have been prepared by filling a copolymer containing quaternary ammonium groups with an excellent ion-exchange capability into a porous polyolefin substrate, showing a high performance superior to that of a commercial membrane. In addition, it was confirmed that the electrochemical membrane performances are preserved while the water-splitting flux is effectively controlled by coating an imidazolium polymer onto the surface of the base membrane. The prepared PFAEMs revealed remarkably low electrical resistances of about 1/6~1/8 compared to those of a commercial membrane, and simultaneously low water-splitting flux comparable with that of cation-exchange membranes under a concentration polarization condition.

Effect of Carbon Dioxide in the Air on Zinc-air Cell (대기중의 이산화탄소가 공기-아연전지에 미치는 영향)

  • Kim, Nam-In;Park, Ki-Hong;Choi, Yong-Kook;Lee, Woo-Tae
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.177-182
    • /
    • 1999
  • The electrolyte was brought into contact with air and potassium carbonate concentration was measured with various contact time in order to check the effect of carbon dioxide in the air on zinc-air cell. The relationship between potassium carbonate concentration in electrolyte and battery capacity was also studied. The potassium carbonate concentration increased due to carbon dioxide absorption with increasing contact time with air, but the cell capacity linearly decreased with increasing potassium carbonate concentration in the electrolyte. The rate of carbon dioxide absorption was mainly affected by the pore size of hydrophobic membrane. Our study showed that adapting the pore of hydrophobic membrane decreased the loss of cell discharge performance due to the presence of carbon dioxide or water vapor in the atmosphere.

  • PDF

Evaluation of Apparent Chloride Diffusivity of Types of Concretes (콘크리트 종류별 겉보기 염소이온 확산특성 평가)

  • 문한영;김홍삼;최두선;이승훈;손유신
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.74-77
    • /
    • 2003
  • This paper investigated the apparent chloride diffusivity of various concretes. Ten mixtures of concrete were initially prepared and tested to estimate diffusion property. The penetration depth and concentration of chloride ion were examined at the same water-binder ration. The binders were composed of normal portland cement, fly ash, ground granulated blast-furnace slag, and silica fume. From the results, it was concluded that using the mineral admixtures had a filling effect on the pore structure of cements matrix due to those pozzoanic reaction with the hydrates of cement, which increases the tortuosity of pore and makes large pore finer. And diffusivity of chloride is following: NPC100 > F10N90 > F30N70 > F20N80 > F20S05 > G30N70 > F10S05 > G30S05 > G30F15 > G50N50.

  • PDF

Groundwater inflow rate estimation considering excavation-induced permeability reduction in the vicinity of a tunnel (터널 굴착으로 인한 터널인접 절리암반 투수계수 감소를 고려한 터널 내 지하수 유입량 산정방법)

  • Moon, Joon-Shik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.333-344
    • /
    • 2013
  • This paper discussed about the effect of permeability reduction of the jointed rock mass in the vicinity of a tunnel which is one of the reasons making large difference between the estimated ground-water inflow rate and the measured value. Current practice assumes that the jointed rock mass around a tunnel is a homogeneous, isotropic porous medium with constant permeability. However, in actual condition the permeability of a jointed rock mass varies with the change of effective stress condition around a tunnel, and in turn effective stress condition is affected by the ground water flow in the jointed rock mass around the tunnel. In short time after tunnel excavation, large increase of effective tangential stress around a tunnel due to stress concentration and pore-water pressure drop, and consequently large joint closure followed by significant permeability reduction of jointed rock mass in the vicinity of a tunnel takes place. A significant pore-water pressure drop takes place across this ring zone in the vicinity of a tunnel, and the actual pore-water pressure distribution around a tunnel shows large difference from the value estimated by an analytical solution assuming the jointed rock mass around the tunnel as a homogeneous, isotropic medium. This paper presents the analytical solution estimating pore-water pressure distribution and ground-water inflow rate into a tunnel based on the concept of hydro-mechanically coupled behavior of a jointed rock mass and the solution is verified by numerical analysis.

Characterization of Physical Factor of Unsaturated Ground Deformation induced by Rainfall (강우를 고려한 불포화 지반변형의 영향인자 평가)

  • Kim, Man-Il;Jeon, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.127-136
    • /
    • 2008
  • Geophysical survey for establishing a wide site for the distribution of water content, wetting front infiltration due to the rainfall, and distribution of groundwater level has been performed by using 8round penetration radar (GPR) method, electrical resistivity method, and so on. On the other hand, a narrow area survey was performed to use a permittivity method such as time domain reflectometry, frequency domain reflectometry, and amplitude domain reflectometry methods for estimating volumetric water content, soil density, and concentration of contaminant in surface and subsurface. The permittivity methods establish more corrective physical parameters than different found survey technologies mentioned above. In this study for establishment of infiltration behaviors for wetting front in the unsaturated soil caused by an artificial rainfall, soil physical parameters for volumetric water content, pore water pressure, and pore air pressure were measured by FDR measurement device and pore water pressure meter which are installed in the unsaturated weathered granite soil with different depths. Consequently, the authors were proposed to a new establishment method for analyzing the variations of volumetric water content and wetting front infiltration from the responses of infiltrating pore water in the unsaturated soil.

Effect of powder activated carbon replacement on HCPAC-MBR system operation (고농도 분말활성탄 결합 MBR 운전에 대한 활성탄 교체주기의 영향)

  • Lee, Chae-Ha;Kim, Jin-Tae;Lee, Jung-Hyun;Seo, Gyu-Tae;Kim, In S.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.141-148
    • /
    • 2008
  • This study was conducted to evaluate the effect of PAC(Powder Activated Carbon) retention time on stable operation of high concentration powered activated carbon(HCPAC-MBR) in the treatment of secondary domestic wastewater. The pilot scale HCPAC-MBR system was operated at two different SRTs, 25 days and 100 days. The main drawback of HCPAC-MBR system was the rapid increase of trans-membrane pressure. The increase rate of trans-membrane pressure was proportional to SRT value at constant flux. This result seemed to be caused by reduced amount of EPS adsorbed on the PAC in the reactor by decreasing the SRT of the PAC. The particle size of the PAC was also influenced by SRT. The PAC size was decreased as SRT was increased. The change of particle size could be one reason for the change of trans-membrane pressure. The pore volume in the cake-layer formed on the membrane surface became to be increased by reducing SRT, because the cake-layer was highly composed of the PAC. Therefore, increased pore volume might play a role to reduce the trans-membrane pressure. The removal rate of E260 and TOC was also inversely proportional to SRT value.

Iron(III) removal from aqueous solution using MCM-41 ceramic composite membrane

  • Basumatary, Ashim Kumar;Kumar, R. Vinoth;Pakshirajan, Kannan;Pugazhenthi, G.
    • Membrane and Water Treatment
    • /
    • v.7 no.6
    • /
    • pp.495-505
    • /
    • 2016
  • Mesoporous MCM-41 was deposited on an inexpensive disk shaped ceramic support through hydrothermal technique for ultrafiltration of $Fe^{3+}$ from aqueous solution. The ceramic support was fabricated using uni-axial compaction technique followed by sintering at $950^{\circ}C$. The characteristics of MCM-41 powder as well as the composite membrane were examined by X-ray diffraction (XRD), thermogravimetric analysis (TGA), field emission scanning electron microscope (FESEM), porosity and pure water permeation test. The XRD result revealed the good crystallinity and well-resolved hexagonally arranged pore geometry of MCM-41. TGA profile of synthesized MCM-41 zeolite displayed the three different stepwise mechanisms for the removal of organic template. The formation of MCM-41 on the porous support was verified by FESEM analysis. The characterization results clearly indicated that the accumulation of MCM-41 by repeated coating on the ceramic disk directs to reduce the porosity and pore size from 47% to 23% and 1.0 to $0.173{\mu}m$, respectively. Moreover, the potential of the fabricated MCM-41 membrane was investigated by ultrafiltration of $Fe^{3+}$ from aqueous stream at various influencing parameters such as applied pressure, initial feed concentration and pH of solution. The maximum rejection 85% was obtained at applied pressure of 276 kPa and the initial feed concentration of 250 ppm at pH 2.

Analysis of Origin Matter of Blackish Water in Dam Reservoir During Winter (동절기 댐저수지 수색변동에 영향을 미치는 인자 및 원인물질 분석)

  • Lee, Yosang;Shin, Hyun Sang;Yi, Hye Suk;Park, Jae-Chung
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.1
    • /
    • pp.69-77
    • /
    • 2007
  • This study has been conducted to assess blackish-water phenomena in Dam reservoir. To searching for the reason, we survey physical changes in reservoir and analyze metal and organic content in particulate materials and water. The blackish-water phenomena in lake A are occurred with turbidity increases in turnover season irregularly. It was reported on 6 Jan. 2005 weakly and the water column mixed with 35~40m depth and water temperature shows $7^{\circ}C$. The turbidity of AD and AM site increased up to 20NTU. Especially, AN site shows 27NTU, such a result makes that Dam manager conclude it to blackish-water phenomena. The results of sequential extraction analysis show that over 80% of Al, Cr and Fe is existed in residual form in sediment. On the other hand, the most part of Mn shows exchangeable and carbonates form, which have a good possibility of release to water column. Mn contents in pore waters of the sediment samples are also found to be ~4 times higher than Fe contents. The metal contents in pore water of different dam sites are in order of AN (Fe: 9.98, Mn: 40.6) > AD(8.33, 37.5) > DD(1.91, 2.55). According to the results of extracted organic materials from sediment, humic substances is occupied with over 85% in total organic carbon including 23~45% of humic acid (HA) and 0.9~8.5% of fulvic acid (FA). However, HA content in pore water is not detectable while FA contents, acid-soluble humic fractions is higher than that of sediment(10~15%). which indicating that FA is a main humic components affecting water color. The color unit per DOC of FA in pore waters of different dam sites are found to be higher in lake A than lake D. From the results, it could be suggested that blackish-water phenomena of lake A are mainly arise from higher concentration of Mn and water soluble organic fractions (e.g., FA) released from sediments as well as the strength of turnover in Dam reservoir.

A Study on the Correlation between Electrical Resistivity and Properties of Contaminated Soils (오염지반의 전기비저항치와 토성과의 상관성 연구)

  • 윤길림;이영남
    • Geotechnical Engineering
    • /
    • v.14 no.2
    • /
    • pp.79-92
    • /
    • 1998
  • Parametric studies based on laboratory pilot tests were performed to investigate the relationships between electrical resistivity and properties of contaminated soils. Three kinds of sandy soils sampled and leachate from an industrial waste landfill were mired to model the contaminated soils. Electrical resistivity of soils was measured by using a simulated resistivity cone penetrometer probe. In the experiments. the electrical resistivity was observed by changing the water content, void ratio, unit weight, degree of saturation, and concentration of the leachate. The test results show that the electrical resistivity of soils depends largely on the water content and the electrical property of pore water rather than unit weight and types of soils.

  • PDF

Applications of Acid/Base Modified Activated Carbon for Stabilization of Sediment Contaminated with Organic Compounds (산/염기 개질활성탄을 이용한 유기오염물질 오염 퇴적토 안정화를 위한 적용성 연구)

  • Seunghyun Kang;Jaewoo Park
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.5
    • /
    • pp.5-13
    • /
    • 2024
  • This paper investigates the stabilization feasibility of contaminated sediment contaminated with benzyl butyl phthalate (BBP) using acid/base-modified activated carbon. The efficiency of stabilizers was evaluated by analyzing the impact of the activated carbon on the decomposition and adsorption of the contaminant, along with the biological effects on earthworms. Additionally, the contaminant migration was monitored with the BBP concentration in pore water using low-density polyethylene. The research results indicated that the accumulated concentration of BBP was approximately 2% lower in the experimental group applying a 5% mixture ratio of modified activated carbon compared to the group applying a 10% mixture ratio. The leaching into water was reduced by over 18% in all experimental conditions after 7-day exposure period. Over 25% reduction was observed after 28-day exposure. The pore water concentrations were measured. After 7 days of exposure, the mechanically mixed experimental group exhibited a higher pore water stabilization rate compared to the biologically mixed group. Within the mechanically mixed group, the experimental group with 10% mixture of modified activated carbon showed a 1% higher stabilization rate than the group with 5% mixture. After 28 days of exposure, the biologically mixed experimental group demonstrated a higher pore water stabilization rate compared to the mechanically mixed group. Moreover, within the biologically mixed group, the experimental group with 10% mixture of modified activated carbon showed approximately 0.1% higher stabilization rate than the group with 5% mixture.