• Title/Summary/Keyword: Concentration Loads

Search Result 360, Processing Time 0.029 seconds

Deflection Test for Low Noise Axle (저소음 Axle 개발을 위한 디플렉션 Test에 대한 연구)

  • Choi, Byung-Jae;Bark, Soon-Gwan;Lee, Kang-Hyun;Jo, Yun-Kyung;Cheon, Seong-Ha
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1391-1394
    • /
    • 2007
  • In order for Hypoid gear development. Gears are required to sustain heavy loads or on applications where the gear box is made or a material with a different coefficient of thermal expansion form that or the gears and shafts, it is desirable to make a deflection and contact check under load. The deflection test is performed in the actual gear mounting using completely processed gear. This test should cover the full operating range of gear loads from no load to peak load. Under peak load the contact pattern should extend to the tooth boundaries without showing a concentration of the contact pattern at any point on the tooth surface.

  • PDF

A Study on a Technique of the Measurement of Flame Temperature and Soot Using the Two-color Method in Diesel Engines (디젤엔진에서 이색법을 이용한 화염온도와 Soot의 계측기술에 관한 연구)

  • Lee, Tae-Won;Lee, Seon-Bong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.9
    • /
    • pp.3007-3014
    • /
    • 1996
  • The instantaneous flame temperature and soot formation and oxidation in a D.I. diesel engine are measured using a two-color method. The proposed method based on the continuous spectral radiation from the soot particles in the flame is applicable to industrial diesel engines without major modifications of their main characteristics. Measurements are performed at one location inside the combustion chamber of a D.I. diesel engine. Effects of different engine speeds and loads on flame temperature and KL factor which is an index of soot concentration were examined. Little temperature change were observed with increasing rpm, while increased with loads. The higher the flame temperature is, the lower the KL factor is.

Basic Monitoring Concept for Revised Unit Load on NPS (비점오염원 원단위 개정을 위한 조사연구 방향)

  • Shin, Dongseok
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.429-433
    • /
    • 2007
  • Many researchers have made a study of NPS unit-loads and the scientific evaluation method which need for formulating and enforcing a Total Maximum Daily Load (TMDL) management system and modifying a pollutant discharge loadings function. Some showed the event mean concentration (EMC) on single land-use. For the most parts, as the results showed on multiple land-uses, those cannot be used for NPS unit-loads calculation. NPS runoff shows various phenomena depending on rainfall monitoring data, therefore sampling methods and frequency for NPS monitoring must be different from the general monitoring for water quality trend assessment.

Nonlinear forced vibration of axially moving functionally graded cylindrical shells under hygro-thermal loads

  • Jin-Peng Song;Gui-Lin She;Yu-Jie He
    • Geomechanics and Engineering
    • /
    • v.36 no.2
    • /
    • pp.99-109
    • /
    • 2024
  • Studying the dynamic behavior of axially moving cylindrical shells in hygro-thermal environments has important theoretical and engineering value for aircraft design. Therefore, in this paper, considering hygro-thermal effect, the nonlinear forced vibration of an axially moving cylindrical shell made of functionally graded materials (FGM) is studied. It is assumed that the material properties vary continuously along the thickness and contain pores. The Donnell thin shell theory is used to derive the motion equations of FGM cylindrical shells with hygro-thermal loads. Under the four sides clamped (CCCC) boundary conditions, the Gallekin method and multi-scale method are used for nonlinear analysis. The effects of power law index, porosity coefficient, temperature rise, moisture concentration, axial velocity, prestress, damping and external excitation amplitude on nonlinear forced vibration are explored through parametric research. It can be found that, the changes in temperature and humidity have a significant effect. Increasing in temperature and humidity will cause the resonance position to shift to the left and increase the resonance amplitude.

Appropriate Methods in Determining the Event Mean Concentration and Pollutant Removal Efficiency of a Best Management Practice

  • Maniquiz, Marla C.;Choi, Ji-Yeon;Lee, So-Young;Cho, Hye-Jin;Kim, Lee-Hyung
    • Environmental Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.215-223
    • /
    • 2010
  • This study attempted to develop and suggest a more appropriate method for the determination of event mean concentration (EMC) and pollutant removal efficiency of a stormwater best management practice (BMP) considering rainfall. The stormwater runoff and hydrologic data gathered from 22 storm events during a 28-month monitoring period on a swirl and filtration type of BMP were used to evaluate the developed methods. Based on the findings, the modified EMC method resulted in lower (average) values than the overall EMC, although the differences were not significant (P>0.05). By comparison, the developed 'Rainfall Occurrence Ratio' (ROR) method was most significantly correlated (r=0.967 to 988, P<0.009) with the other existing removal efficiency determination methods such as the 'Efficiency Ratio' (ER), 'Summation of Loads' (SOL) and 'Regression of Loads' (ROL) methods. In addition, the ROR method gave the highest efficiency values, with no significant differences with any of the pollutant parameters, unlike the other three methods. These results were obtained because the ROR method integrated both pollutant loading and rainfall, which are not considered by the other three methods. Therefore, this study proved the suitability of the modified EMC and ROR methods for application in other BMP monitoring studies.

Design of Energy Model of Greenhouse Including Plant and Estimation of Heating and Cooling Loads for a Multi-Span Plastic-Film Greenhouse by Building Energy Simulation (건물에너지시뮬레이션을 활용한 연동형 온실 및 작물에너지모델 설계 및 이의 냉·난방부하 산정)

  • Lee, Seung-No;Park, Se-Jun;Lee, In-Bok;Ha, Tae-Hwan;Kwon, Kyeong-Seok;Kim, Rack-Woo;Yeo, Uk-Hyeon;Lee, Sang-Yeon
    • Journal of Bio-Environment Control
    • /
    • v.25 no.2
    • /
    • pp.123-132
    • /
    • 2016
  • The importance of energy saving technology for managing greenhouse was recently highlighted. For practical use of energy in greenhouse, it is necessary to simulate energy flow precisely and estimate heating/cooling loads of greenhouse. So the main purpose of this study was to develope and to validate greenhouse energy model and to estimate annual/maximum energy loads using Building Energy Simulation (BES). Field experiments were carried out in a multi-span plastic-film greenhouse in Jeju Island ($33.2^{\circ}N$, $126.3^{\circ}E$) for 2 months. To develop energy model of the greenhouse, a set of sensors was used to measure the greenhouse microclimate such as air temperature, humidity, leaf temperature, solar radiation, carbon dioxide concentration and so on. Moreover, characteristic length of plant leaf, leaf area index and diffuse non-interceptance were utilized to calculate sensible and latent heat exchange of plant. The internal temperature of greenhouse was compared to validate the greenhouse energy model. Developed model provided a good estimation for the internal temperature throughout the experiments period (coefficients of determination > 0.85, index of agreement > 0.92). After the model validation, we used last 10 years weather data to calculate energy loads of greenhouse according to growth stage of greenhouse crop. The tendency of heating/cooling loads change was depends on external weather condition and optimal temperature for growing crops at each stage. In addition, maximum heating/cooling loads of reference greenhouse were estimated to 644,014 and $756,456kJ{\cdot}hr^{-1}$, respectively.

Estimation of Production Unit Loads of Livestock Manure Based on TOC (TOC 기반 가축분뇨 발생 원단위 산정)

  • Lee, Yunhee;Kim, Yongseok;Park, Jihyung;Oa, Seong-Wook
    • Journal of Wetlands Research
    • /
    • v.16 no.3
    • /
    • pp.403-409
    • /
    • 2014
  • Assessment of pollutant loads for livestock manure based on total organic carbon (TOC) is being required to apply TOC as an indicator in management of total maximum daily loads. In this study, TOC based unit loads of pig manure known as highly contributing to water pollution assessed. The concentration of pig manure, amount of manure production including cleaning water, and unit loads were investigated targeting 52 farms according to 4 major river basins, rearing form, farm scale, and piggery form. The manure production was highly generated in scraper type of piggery, in small scaled farm rearing sow, and in Han River basin and Nakdong River basin. The averaged manure production was 7.4 L/head/d in total river basins. Averaged concentrations were investigated as TOC 16,037 mg/L, BOD 10,559 mg/L, TN 4,145 mg/L, and TP 503 mg/L. Corresponding unit loads were assessed as TOC 117.1 g/head/d, BOD 77.1 g/head/d, TN 34.7 g/head/d, and TP 3.67 g/head/d.

Development of the EMC-based Empirical Model for Estimating Pollutant Loads from Small Agricultural Watersheds (농촌 소유역에서 EMC를 이용한 오염물질 부하량 산정기법의 개발)

  • Kim, Young-Chul;Kim, Geon-Ha;Lee, Dong-Ryul
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.4
    • /
    • pp.691-703
    • /
    • 2003
  • In this paper, a new and integrated approach easily used to calculate the pollutant loads from agricultural watersheds is suggested. Basic concepts of this empirical tool are based on the hypotheses that variations in event mean concentrations(EMCs) of the pollutants from a given agricultural watershed during rainstorms are only due to the rainfall pattern. This assumption would be feasible to agricultural watersheds whose land uses does not change during the cultivation period overlapped by rainy season and also in which point-sources of the pollutants are rare. Therefore, if EMC data sets through extensive sampling from various rural areas are available, it is possible to establish relationships between EMCs, shapes and land uses of the watersheds, and rainfall events. For this purpose, fifty one sets of EMC values were obtained from nine different watersheds, and those data were used to develop predictive tools for the EMCs of 55, COD, TN and TP in rainfall runoff. The results of the statistical tests for those formulas show that they are not only fairly good in predicting actual EMC values of some parameters, but also useful in terms of calculating pollutant loads on any time-spans such as the day of rainfall event or weekly, monthly, and yearly. Their applicability was briefly demonstrated and discussed. Also, the unit loads calculated from EMCs based on different land uses and real rainfall data over one of the watershed used for this study. were provided, and they are compared with other well-known unit loads.

Analysis of Hydrologic Cycle and BOD Loads Using HSPF in the Anyancheon Watershed (HSPF 모형을 이용한 안양천 유역의 물순환 및 BOD 부하량 분석)

  • Lee, Kil-Seong;Chung, Eun-Sung;Lee, Joon-Seok;Hong, Won-Pyo
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.8
    • /
    • pp.585-600
    • /
    • 2007
  • The hydrologic cycle and BOD pollutant loads of all sub-watersheds were analyzed using HSPF (Hydrological Simulation Program-Fortran). At first, sensitivity analyses to water quantity (peak discharge and total volume) and quality (BOD peak concentrations and total loads) were conducted and some critical Parameters were selected. For more precise simulation, the study watershed was divided into four parts according to the landuse characteristics and used climate data and so calibrated and verified respectively. It was found that as the urban area ratio increases in the downstream direction, baseflow decreases (11.1 % $\rightarrow$ 5.0%) and the ratio of direct runoff volume(42.5 % $\rightarrow$ 56.9 %), BOD concentration (3.3 mg/L $\rightarrow$ 15.0 mg/L) and unit loads (55.4 kg/ha/year $\rightarrow$ 354.5 kg/ha/year) increase.

Analysis of Reduction of NPS Pollution loads using the small sediment trap at field (소규모 침사구를 이용한 밭의 비점오염원 저감 효과 분석)

  • Shin, Min-Hwan;Lim, Kyoung-Jae;Jang, Jeong-Ryeol;Choi, Yong-Hun;Park, Woon-Ji;Won, Chul-Hee;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.27-35
    • /
    • 2012
  • Various Best Management Practices (BMPs) have been suggested to reduce Nonpoint source pollutant loads from agricultural fields. However, very little research regarding water quality improvement with sediment trap has been performed in Korea. Thus, effects of sediment trap were investigated in this study. Three sediment traps were installed at the edge of six plots and flow and water quality of inflow and outflow were monitored and analyzed. It was found that approximately 64.1 % of flow reduction was observed. In addition, pollutant concentration of outflow was reduced by 39.0 % for $BOD_5$. For SS, $COD_{Mn}$, DOC, T-N, T-P, approximately 62.1 %, 43.4 %, 43.5 %, 40.0 %, and 41.2 % reduction were observed, respectively. Over 80 % and 90 % of pollutant loads were reduced from sediment trap #2 and #3 because of less outflow from plots covered with rice straw/straw mat. In case of intensive rainfall events occurred from July 26~29, 2011, over 60 % of pollutant and 88.9 % of sediment reduction were observed from sediment trap #3. As shown in this study, small sediment traps could play important roles in reducing pollutant loads from agricultural fields. If proper management practices, such as rice straw/straw mat, are used to protect surface from rainfall impacts and rill formation, much pollutant reduction could be expected.