• Title/Summary/Keyword: Concentration Loads

Search Result 360, Processing Time 0.027 seconds

FINITE ELEMENT ANALYSIS OF CYLINDER TYPE IMPLANT PLACED INTO REGENERATED BONE WITH TYPE IV BONE QUALITY (IV형의 골질로 재생된 골내에 식립된 원통형 임플란트의 유한요소법적 연구)

  • Kim, Byung-Ock;Hong, Kug-Sun;Kim, Su-Gwan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.4
    • /
    • pp.331-338
    • /
    • 2004
  • Stress transfer to the surrounding tissues is one of the factors involved in the design of dental implants. Unfortunately, insufficient data are available for stress transfer within the regenerated bone surrounding dental implants. The purpose of this study was to investigate the concentration of stresses within the regenerated bone surrounding the implant using three-dimensional finite element stress analysis method. Stress magnitude and contours within the regenerated bone were calculated. The $3.75{\times}10-mm$ implant (3i, USA) was used for this study and was assumed to be 100% osseointegrated, and was placed in mandibular bone and restored with a cast gold crown. Using ANSYS software revision 6.0, a program was written to generate a model simulating a cylindrical block section of the mandible 20 mm in height and 10 mm in diameter. The present study used a fine grid model incorporating elements between 165,148 and 253,604 and nodal points between 31,616 and 48,877. This study was simulated loads of 200N at the central fossa (A), at the outside point of the central fossa with resin filling into screw hole (B), and at the buccal cusp (C), in a vertical and $30^{\circ}$ lateral loading, respectively. The results were as follows; 1. In case the regenerated bone (bone quality type IV) was surrounded by bone quality type I and II, stresses were increased from loading point A to C in vertical loading. And stresses according to the depth of regenerated bone were distributed along the implant evenly in loading point A, concentrated on the top of the cylindrical collar loading point B and C in vertical loading. And, In case the regenerated bone (bone quality type IV) was surrounded by bone quality type III, stresses were increase from loading point A to C in vertical loading. And stresses according to the depth of regenerated bone were distributed along the implant evenly in loading point A, B and C in vertical loading. 2. In case the regenerated bone (bone quality type IV) was surrounded by bone quality type I and II, stresses were decreased from loading point A to C in lateral loading. Stresses according to the depth of regenerated bone were concentrated on the top of the cylindrical collar in loading point A and B, distributed along the implant evenly in loading point C in lateral loading. And, In case the regenerated bone (bone quality type IV) was surrounded by bone quality type III, stresses were decreased from loading point A to C in lateral loading. And stresses according to the depth of regenerated bone were distributed along the implant evenly in loading point A, B and C in lateral loading. In summary, these data indicate that both bone quality surrounding the regenerated bone adjacent to implant fixture and load direction applied on the prosthesis could influence concentration of stress within the regenerated bone surrounding the cylindrical type implant fixture.

Characteristics and Assessment of Metal Pollution and their Potential Source in Stormwater Runoff from Shihwa Industrial Complex, Korea (시화산업단지 강우유출수 내 중금속 오염도 평가 및 오염원 추적 연구)

  • Lee, Jihyun;Jeong, Hyeryeong;Choi, Jin-Young;Ra, Kongtae
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.1
    • /
    • pp.91-101
    • /
    • 2020
  • Stormwater runoff is known as a major non-point water pollution source that transports heavy metals, which have accumulated in road surface, to stream and coastal area. Dissolved and particulate metals in stormwater runoffs have been investigated to understand the outflow characteristics of heavy metals during rainfall events and to identify their pollution sources. The concentration of dissolved Co and Ni decreased after the outflow with high concentrations at the beginning of the rainfall, and other metals showed different characteristics depending on the rainfall and rate of discharge. Particulate metals showed a similar trend with the temporal variation of suspended solids concentration in stormwater runoffs. The results of geo-accumulation index (Igeo) indicated that the stormwater runoffs from industrial region were very highly polluted with Cu, Zn and Cd. As a result of comparing the metal concentrations of <125 ㎛ for road dust near the study area, Cu, Zn and Cd were originated from inside of metal manufacturing facilities rather than traffic activities at road surface and these metals accumulated on the surface area of facilities were transported to the water environments during stormwater event. The average discharged amounts of heavy metals for one rainfall event were Cr 128 g, Co 12.35 g, Ni 98.5 g, Cu 607.5 g, Zn 8,429.5 g, As 6.95 g, Cd 3.7 g, Pb 251.75 g, indicating that metal runoff loads in the stormwater runoffs are closely related to surrounding industry types.

Comparison of Pollutant Load Discharge Characteristics with Chemical Fertilizer and Organic Compost Applications (화학비료와 유기비료 시비후 오염배출 농도 특성 비교)

  • Lyou, Chang-Woun;Shin, Yong-Cheol;Heo, Sung-Gu;Choi, Ye-Hwan;Lim, Kyoung-Jae;Choi, Joong-Dae
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.490-495
    • /
    • 2005
  • Organic compost has been widely applied to the cropland because it has been thought as Environmentally Sound Agriculture (ESA) in Korea. However, many field researches have been done to investigate water quality impacts of organic compost uses, compared to those from chemical fertilizer applications. It was found that pollutant loads from organic compost applied croplands were higher than those from chemical fertilizer applied areas. However, there might be other unknown factors affecting the results since the experiments were performed at the outside fields. In this study, indoor rainfall experiments using the Norton rainfall simulator systems were done to minimize and exclude errors from unknown sources by controlling soil characteristics, rainfall amount, rainfall intensity, and fertilizer treatments. The amounts of surface runoff and groundwater percolated from 10% and 20% slope plots were measured and water quality samples were collected and analyzed for BOD, COD, and T-P. Flow weighted mean concentration (FWMC) values were computed to assess effects of different fertilizer treatments. It was found that average concentration values of BOD were 5.57 mg/L from chemical fertilizer treated plot and 8.08 mg/L from organic compost treated plots. For 10% slope, FWMC BOD values from organic compost treated plots were higher by 29.9% than those from chemical fertilizer treated plots. For 20% slope, FWMC BOD values from organic plots were higher by 38.8% than those from chemical fertilizer plots. FWMC BOD values for 20% slope plots were higher than those from those for 10% slope plots. The similar trends were found for COD and T-P. In Korea, excessive use of organic compost has caused extremely high levels of organic matter contents at the cropland. Organic compost are usually applied to the cropland to improve soil quality, while chemical fertilizer is applied to help crop growth. Since organic compost is very slow in releasing its nutrients to the soil, farmers usually apply excessive organic compost for immediate effects and maximum crop yields, which has been causing soil and water quality degradations. Therefore, thorough investigations for better nutrient management plans are needed to develop the ESA strategy in Korea.

  • PDF

Evaluation of Pollution Level Attributed to Nonpoint Sources in Nakdonggang Basin, Korea (낙동강수계 권역별 비점오염원 오염도 평가)

  • Lee, Jaewoon;Kwon, Heongak;Choi, Hanyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.5
    • /
    • pp.393-405
    • /
    • 2014
  • In this study, the nonpoint sources were evaluated by calculating the Nadonggang basin regional water quality and nonpoint source pollution load discharged. And were selected the banks of first administration based on the results and the direction of the next administration. As a results of estimating the water quality about BOD concentration in the mid influence area in the Nakdonggang basin, it was founded that 10 sites for 'Ia' water quality level, 6 sites for 'lb' water quality level, 5 sites for 'II' water quality level, 1 sites for 'I' water quality level. The estimation of COD concentration in the mid influence area, It showed that 9 sites for 'Ib' water quality level, 6 sites for 'II' water quality level, 6 sites for 'III' water quality level, 1 site for 'IV' water quality level. The assessment of water quality made Mid influence area of Gumhogang, Nakdong Goryung, Nakdong Milyang and Namgang selected as the mid influence area of high pollution. And delivery loads of nonpoint sources were calculated for mid influence area in Nakdonggang basin(max delivery load : 17,706.7 kg/day for Gumhogang influence area). As the result of calculating NPS(nonpoint sources) delivery load and water quality at influence area in Nakdonggang basin, Gumhogang influence area was selected as an area for management priority among nonpoint sources.

Removal of VOCs and H2S from Waste Gas with Biotrickling Filter (생물살수여과법을 이용한 공기중 VOC 및 H2S 제거)

  • Kim, Kyoung-Ok;Kim, Yong-Je;Won, Yang-Soo
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.519-525
    • /
    • 2008
  • Biodegradation of toluene, styrene and hydrogen sulfide as model compounds of volatile organic compounds and odor from waste gas was investigated experimentally in a biotrickling filter. This study focussed on the description of experimental results with regard to operating conditions. The effect of varying $H_2S$ load rate and inlet concentration was investigated under autotropic and mixotropic environmental conditions. The $H_2S$ removal efficiencies of greater than 99% were achieved at $H_2S$ loads below $10g/m^3{\cdot}hr$ for each environment. It was observed that the maximum elimination capacity of mixotrophic filter was achieved a little greater than the one of autotrophic filter. The biofiltration of toluene and styrene in trickling bed was examined under different gas flow rates, load rates, and inlet concentrations. Below $40g/m^3{\cdot}hr$ of toluene loading, the elimination capacity and loading were identical and it was completely destroyed. In high loading of toluene, the biotrickling filter was operated at its maximum elimination capacity. In the inlet concentration of 0.2, 0.5, and $1.0g/m^3$, the maximum elimination capacity of toluene showed 40, 45, and $60g/m^3{\cdot}hr$, respectively. After a short adaptation period, it was demonstrated that the results of styrene in originally toluene adapted bioreactor was similar with the ones of toluene. However, the performance of filer for styrene is generally a little lower than for toluene. The operating conditions (including liquid flow rate etc.) allowing the highest removal efficiency should be determined experimentally for each specific case.

Nutrient Balance in the Paddy Fields Watershed with a Source of River Water (하천관개지역 광역논에서의 영양물질의 물질수지)

  • Lee, Jeong Beom;Lee, Jae Yong;Li, Si Hong;Jang, Jeong Ryeol;Jang, Ik Geun;Kim, Jin Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.5
    • /
    • pp.11-19
    • /
    • 2014
  • The objective of this research was to investigate concentration and load of nutrients such as total nitrogen (TN), nitrate nitrogen ($NO_3$-N) total phosphorous (TP), and phosphate phosphorous ($PO_4$-P) in a 23.4-ha paddy fields watershed with river water source. Water samples for irrigation water, drainage water, ponded water and groundwater were collected, and irrigation and drainage water were measured at 5~10 day intervals during normal days and at 2~6 hours intervals during three storm events. The amount of irrigation water in the study area was over 2,000 mm, which is almost identical to that in the area irrigated from a large reservoir but much more than that in the area irrigated from a pumping station. Mean flow-weighted concentrations of TN and TP in irrigation water were 2.8 and 0.15 mg/L, respectively, higher than those in the area irrigated from a large reservoir or a pumping station. The ratios of irrigation load to total inflow load for TN and TP were 88 %, and the ratios of surface outflow load to total outflow load for TN and TP were over 90 %, indicating that total nutrient load may be greatly affected by water management. The nutrient loads per area in the study area were estimated as TN 21.1 kg/ha and TP 1.1 kg/ha. Especially, the TP load per area in the study area was smaller than that in the area irrigated from a large reservoir or a pumping station. This may be because outflow load is not high likely due to sedimentation of particulate P and irrigation water load is high due to high TP concentration in irrigation water and high amount of irrigation water.

Water Quality and Particle Size Distributions of Road Runoff in Storm Event (강우시 도로유출수 수질특성 및 입경분포)

  • Lee, Jun-Ho;Cho, Yong-Jin;Bang, Ki-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.777-784
    • /
    • 2005
  • The first flush phenomenon is defined as the initial period of road runoff during which the concentration of pollutants was significantly high. Road runoff contains significant loads of micro-particles, heavy metals and organic constituents. There were two major objectives of this study. The first objective was to characterize the road runoff. The second objective was to measure and evaluate particle sire distribution of the road runoff, Stormwater runoff was monitored on two sites of four lane road areas along with traffic volume. A total six storm events were monitored to characterize the road runoff. The quantity of road runoff and quality constituents, including chemical oxygen demand ($COD_{Cr}$), suspended solids(SS), total Kjeldahl nitrogen (TKN), ortho-phosphorus ($PO_4-P$), total phosphorus(TP), heavy metals and particle size distribution were analyzed. The results indicate that the concentration of SS, $COD_{Cr}$, TKN and TP ranges were $45{\sim}2,396\;mg/L$, $40{\sim}931\;mg/L$, $0.1{\sim}19.6\;mg/L$, and $0.2{\sim}25.1\;mg/L$, respectively. The results of the regression analysis between SS and the others constituents shows that $COD_{Cr}$, TP, Cu, Pb were highly correlated. And the results showed that the mean range of particle size and uniformity coefficient for road runoff were $6.7{\sim}23.4{\mu}$ and $6.4{\sim}10.2$, respectively.

Effect of Chlorine Dioxide Treatment on Microbial Growth and Qualities of Fish Paste during Storage (이산화염소 처리가 어묵의 저장 중 미생물학적 변화 및 품질에 미치는 영향)

  • Shin, Hee-Young;Lee, Yeon-Ju;Park, In-Young;Kim, Ju-Yeon;Oh, Su-Jin;Song, Kyung-Bin
    • Applied Biological Chemistry
    • /
    • v.50 no.1
    • /
    • pp.42-47
    • /
    • 2007
  • Effect of chlorine dioxide ($ClO_2$) treatment on the microbial and physicochemical changes of fish paste was investigated. Fish paste samples were treated with 5, 10, and 50 ppm of $ClO_2$ solution, respectively, After $ClO_2$ treatment, fish paste samples were individually packaged and stored at 4$^{\circ}C$. The initial microbial loads of samples were 3.8 log CFU/g in total bacterial count, and 2.5 log CFU/g in yeasts and molds. Microbial growth of fish paste during storage showed that populations of total bacteria, yeast and mold were significantly reduced by $ClO_2$ treatment. In particular, the treatment of 50 ppm $ClO_2$ decreased total bacterial count the most significantly among the $ClO_2$ treated fish pastes. The pH and VBN of fish paste decreased with increasing $ClO_2$ concentration. Thiobarbituric acid reacted substance (TBARS) values of treated fish paste increased during storage, regardless of $ClO_2$ concentration. This study showed that 50 ppm chloride dioxide was the optimum dose level to extend the shelf-life of fish paste.

Temporal and Spatial Analysis of Water Quality Data Observed from Major Water Quality Stations in Nakdonggang Watershed (낙동강유역 수질측정자료의 시.공간적 특성 및 수질항목간 특성 분석)

  • Park, Tae-Yang;Kim, Sung-Jae;Kim, Sung-Min;Kim, Sang-Min
    • Journal of agriculture & life science
    • /
    • v.44 no.5
    • /
    • pp.117-127
    • /
    • 2010
  • The purpose of this study is to analyze the temporal and spatial characteristics of water quality data of Nakdonggang watershed which is second largest watershed in South Korea. The correlation between the water quality items for rainy and non-rainy seasons were also analyzed for two TMDL sites which are Gumi and Namji. BOD data of two Total Maximum Daily Loads (TMDL) target sites were compared with TMDL criteria, 3-year arithmetic mean BOD concentration of the target sites should not exceed the target concentration for 2 consecutive years, to figure out current water quality status. Spatial analysis results showed that the correlation coefficient between Goryeong and Hyunpung was highest with the value of 0.978 followed by Hapcheon and Namji with the value of 0.874. The observed BOD data of Gumi station fluctuated around the TMDL criterion, 1.8mg/L while Namji station mostly exceed the criterion, 2.6mg/L. The criteria values for each target sites are defined by Ministry of Environment. The major factor of correlation coefficient was the distance between the stations. The correlation between the water quality items for non-rainy season showed no relation while the correlation between COD and SS was high followed by COD and TP for Gumi and Namji.

Assessment of Water Quality in Pyeongtaek Reservoir and Its Main Tributaries (평택호와 유역 주요 하천의 수환경 및 오염도 평가)

  • Hwang, Soon-Jin;Cho, Kyung-Je;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.1 s.102
    • /
    • pp.38-47
    • /
    • 2003
  • The water quality of the Pyeongtaek Reservoir and its main streams has been eval uated far water pollution state in March, June, September and December,2000. The following are the findings: $NH_4$ accounts for the majority of TN in the inflow streams. In the reservoir, TN and $NH_4$ are the more present in the winter season and less in the summer season, with $1.6{\sim}2.4$ times of $NO_3$ and $5.3{\sim}11.4$ times of $NO_2$ found in December and June compared with other seasons. The concentration of each component is different between streams: $NH_4$ among inorganic nitrogen has the highest concentration in the upstream, and $NO_3$ is more prevalent in the downstream. SRP accounts for $25{\sim}69%$ of TP in the stream. Unlike N component, P component in the reservoir rapidly decreases from upstream toward downstream, except in the summer. Average SRSi slightly increases in the fall, i.e., immediately after rainfall. In the streams, the average concentration of chlorophyll-a ranges from 9 to $33{\mu}g/l$, and is relatively high in the downstream. In contrast, in the reservoir, it is the highest in the upstream where $NH_4$ and SRP are frequently found. In particular, diatom and cryptomonad algae are bloomed in March, and blue-green algae in September; their maximum values are $108{\mu}g/l$ and $130{\mu}g/l$, respectively. Considering the concentration of N and P nutrients, pollution loads can affect the Pyeongtaek Reservoir in the downstream in this order: Ansong Stream