• Title/Summary/Keyword: Concentration Load

Search Result 1,033, Processing Time 0.036 seconds

Watershed Modeling Research for Receiving Water Quality Management in Hwaseong Reservoir Watershed (화성호 유역의 수질관리를 위한 유역모델링 연구)

  • Jang, Jae-Ho;Kang, Hyeong-Sik;Jung, Kwang-Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.819-832
    • /
    • 2012
  • HSPF model based on BASINS was applied for the Hwaseong Reservoir watershed (HRW) to evaluate the feasibility of water quality management. The watershed was divided into 45 sub-basins considering various watershed environment. Streamflow was calibrated based on the measured meteorological data, discharge data of treatment plants and observed streamflow data for 2010 year. Then the model was calibrated against the field measurements of water qualities, including BOD, T-N and T-P. In most cases, there were reasonable agreements between observed and predicted data. The validated model was used to analyze the characterization of pollutant load from study area. As a result, Non-point source pollutant loads during the rainy season was about 66~78% of total loads. In rainy-season, water quality parameters depended on precipitation and pollutant loads patterns, but their concentration were not necessarily high during the rainy season, and showed a decreasing trend with increasing water flow. As another result of evaluation for load duration curves, in order to improve water qualities to the satisfactory level, the watershed managements considering both time-variant and pollution sources must be required in the HRW. Overall, it was found that the model could be used conveniently to assess watershed characteristics and pollutant loads in watershed scale.

Optimal Design of High-Capacity Column-Type Load Cell Using Response Surface Method (반응표면법을 이용한 고하중 기둥형 로드셀의 치적설계)

  • 이태현;이태희;변철웅;박준구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.754-758
    • /
    • 2002
  • According to the enlargement of production facilities and structures, the requirements of high-capacity load cells are increased for monitoring the process conditions in many fields. Generally, however, the accuracy of the column-type high-capacity load cells is not enough due to the geometric nonlinearity. It is supposed to result from the fact that the whole spring element is under high-level stress for the uniform strain field. In this paper, a new shape of spring element is developed which utilizes the stress concentration. As a design criterion, an object function which quantifies the degree of nonlinearity is defined and optimized by use of response surface modeling. As a result, the weight of the spring element is reduced shout 50% in comparison to the conventional shape. The bonding positions of stain gages are found. which show theoretically zero geometrical nonlinearity, while the ratio of overload protection is reduced from 130% to 125% Also it is shown that the response surface method is very efficient in the optimization approach by use of FEM.

  • PDF

A SMA-based morphing flap: conceptual and advanced design

  • Ameduri, Salvatore;Concilio, Antonio;Pecora, Rosario
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.555-577
    • /
    • 2015
  • In the work at hand, the development of a morphing flap, actuated through shape memory alloy load bearing elements, is described. Moving from aerodynamic specifications, prescribing the morphed shape enhancing the aerodynamic efficiency of the flap, a suitable actuation architecture was identified, able to affect the curvature. Each rib of the flap was split into three elastic elements, namely "cells", connected each others in serial way and providing the bending stiffness to the structure. The edges of each cell are linked to SMA elements, whose contraction induces rotation onto the cell itself with an increase of the local curvature of the flap airfoil. The cells are made of two metallic plates crossing each others to form a characteristic "X" configuration; a good flexibility and an acceptable stress concentration level was obtained non connecting the plates onto the crossing zone. After identifying the main design parameters of the structure (i.e. plates relative angle, thickness and depth, SMA length, cross section and connections to the cell) an optimization was performed, with the scope of enhancing the achievable rotation of the cell, its ability in absorbing the external aerodynamic loads and, at the same time, containing the stress level and the weight. The conceptual scheme of the architecture was then reinterpreted in view of a practical realization of the prototype. Implementation issues (SMA - cells connection and cells relative rotation to compensate the impressed inflection assuring the SMA pre-load) were considered. Through a detailed FE model the prototype morphing performance were investigated in presence of the most severe load conditions.

INTEGRITY ANALYSIS OF AN UPPER GUIDE STRUCTURE FLANGE

  • LEE, KI-HYOUNG;KANG, SUNG-SIK;JHUNG, MYUNG JO
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.766-775
    • /
    • 2015
  • The integrity assessment of reactor vessel internals should be conducted in the design process to secure the safety of nuclear power plants. Various loads such as self-weight, seismic load, flow-induced load, and preload are applied to the internals. Therefore, the American Society of Mechanical Engineers (ASME) Code, Section III, defines the stress limit for reactor vessel internals. The present study focused on structural response analyses of the upper guide structure upper flange. The distributions of the stress intensity in the flange body were analyzed under various design load cases during normal operation. The allowable stress intensities along the expected sections of stress concentration were derived from the results of the finite element analysis for evaluating the structural integrity of the flange design. Furthermore, seismic analyses of the upper flange were performed to identify dynamic behavior with respect to the seismic and impact input. The mode superposition and full transient methods were used to perform time-history analyses, and the displacement at the lower end of the flange was obtained. The effect of the damping ratio on the response of the flange was also evaluated, and the acceleration was obtained. The results of elastic and seismic analyses in this study will be used as basic information to judge whether a flange design meets the acceptance criteria.

An Evaluation of Structural Performance of Reinforced Concrete Column Retrofitted with Grid Type Unit Details of Jacketing Method (격자형 유닛 상세를 가진 단면증설공법으로 보강된 철근콘크리트 기둥의 구조성능평가)

  • Moon, Hong Bi;Lee, Jeong In;Lee, Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.1
    • /
    • pp.41-49
    • /
    • 2022
  • In the case of columns in buildings with soft story, the concentration of stress due to the difference in stiffness can damage the columns. The irregularity of buildings including soft story requires retrofit because combined load of compression, bending, shear, and torsion acts on the structure. Concrete jacketing is advantageous in securing the strength and stiffness of existing members. However, the brittleness of concrete make it difficult to secure ductility to resist the large deformation, and the complicated construction process for integrity between the existing member and extended section reduces the constructability. In this study, two types of Steel Grid Reinforcement (SGR), which are Steel Wire Mesh (SWM) for integrity and Steel Fiber Non-Shrinkage Mortar (SFNM) for crack resistance are proposed. One reinforced concrete (RC) column with non-seismic details and two columns retrofitted with each different types of proposed method were manufactured. Seismic performance was analyzed for cyclic loading test in which a combined load of compression, bending, shear, and torsion was applied. As a result of the experiment, specimens retrofitted with proposed concrete jacketing method showed 862% of maximum load, 188% of maximum displacement and 1,324% of stiffness compared to non-retrofitted specimen.

FATIGUE DESIGN FORSUS30IL SPOT-WELDED MULTI-LAP JOINTS SUBJECTED TO TENSILE SHEAR LOAD

  • Na, T.H.m;Jung, W.S.;Bae, D.H;I.S.Shon
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.121-126
    • /
    • 2002
  • The railroad cars or the commercial vehicles are generally manufactured by the spot welding. Among various kinds of spot welded lap joints, multi-lap joints are one of popular joints in manufacturing their body structures. But, fatigue strength of these joints are lower than that of base metal due to high stress concentration at the nugget edge of the spot weld and are known to considerably be influenced by welding conditions as well as the mechanical and geometrical factors. Thus, it is necessary to establish a reasonable and systematic fatigue design criterion for spot welded multi-lap joints. In this paper, the $\Delta$P-N$_{f}$ curves has been rearranged in the $\Delta$$\sigma$-N$_{f}$ relation with the maximum stress at the nugget edge of spot welded multi-lap joints subjected to tensile shear load. Consequently, the fatigue data were evaluated in terms of fracture mechanics by plotting on the $\Delta$OP-N$_{f}$ curves. From the results obtained, both of them have been revealed to be applicable to fatigue design of spot welded multi-lap joints. However, the fracture mechanical approach is found to be more effective than the maximum stress approach in the range on N$_{f}$$\geq$2x10$^{5}$ . .

  • PDF

The Impact of Speech-To-Text-based Class on Learners' Cognitive Abilities

  • HyunMin Kang;SunKwan Han
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.287-293
    • /
    • 2024
  • This research studied the cognitive impact of classes using artificial intelligence on aviation technical school students. First, we developed a class consisting of a class based on traditional presentation materials and a class composed of speech-to-text (STT)-based artificial intelligence materials. A 133 students from an aviation education institution participated in two types of classes. We measured students' cognitive load and Mind Wandering test results before and after class, and conducted an achievement evaluation. As a result of the test analysis, we confirmed that extraneous cognitive load was reduced, content concentration increased, and achievement improved. In the future, we hope that AI-based STT classes will be widely used in schools that teach technology.

EFFECT OF MISALIGNMENT ON THE STATIC CHARACTERISTICS OF 3-LOBE proceeding BEARING

  • Strzelecki, S.;Radulski, W.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.95-96
    • /
    • 2002
  • The operation of proceeding bearing in the conditions of misaligned axis of proceeding and bush leads to the load concentration on the bearing edges causing further mixed lubrication conditions, unstable operation and intensive wear of mating parts. For the design process of proceeding bearing the knowledge of static characteristics determined from the oil film pressure and temperature distribution is very important. For the 3-lobe proceeding bearing, the pressure, temperature and viscosity fields, load capacity, minimum oil film thickness, power loss, oil flow and maximum oil film temperature have been determined by iterative solution of the Reynolds', energy and viscosity equations. The paper introduces the results of theoretical investigations of static characteristics of 3-lobe proceeding bearing operating at misaligned axis of proceeding and bush. An effect of misalignment ratio, length to diameter ratio of the proceeding bearing, the lobe clearance ratio on the static characteristics was investigated. Laminar, adiabatic model of oil film for the solution of Reynolds, energy and viscosity equations was applied.

  • PDF

Adhesion of Ice Slurry in a Multi-component Aqueous Solution with Stirring and Cooling (다성분계 수용액의 교반/냉각에 의한 빙부착)

  • 강채동;강용태;홍희기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1063-1070
    • /
    • 2002
  • To resist ice adhesion on cooling wall is concerned to continuous ice formation in thermal storage system. In this study, ice slurries were formed with two ecological aqueous solution, one is ethanol+silanol and the other is propylene glycol+silanol. By freezing under stirring the solution of $300m\ell$ in a stainless steel vessel which was immersed and cooled in a temperature controlled bath, the shape of ice slurry and the strength of ice adhesion on wall was observed with measuring the temperature and stirring load variation. As the concentration is smaller and the supercooling degree is larger, the ice adhesion is easy to occur. When the stirring load is larger than$ 2.1\times10^{-5}W$, the ice adhesion occurred.

Experimental Study on the Bogie Frame of Tilting Railway Vehicle for Assessment of Structural Safety (한국형 틸팅열차용 주행장치 프레임의 구조적 안전성 평가에 관한 시험적 연구)

  • Kim, Jung-Seok;Kim, Nam-Po;Seo, Sung-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.166-173
    • /
    • 2006
  • This paper investigated strength of a bogie frame for Korean tilting train that is being developed in KRRI. In this study, static load tests based on Japanese Industrial Standard (JIS) were performed. In order to simulate vertical and lateral components generated by tilting link mechanism, four hydraulic actuators were used. The eight load cases such as vertical, lateral, traction, braking and driving gear loads were applied for evaluation of the strength of bogie frame. The stresses measured at the stress concentration points were assessed using Goodman diagram. From the experimental results, structural safety of the bogie frame could be ensured.