• 제목/요약/키워드: Concave-Shaped Corner

검색결과 4건 처리시간 0.015초

Three-Dimensional Limit Equilibrium Stability Analysis of the Irregularly Shaped Excavation Comer with Skew Soil Nailing System

  • Kim, Hong Taek;Par
    • 한국지반공학회지:지반
    • /
    • 제14권3호
    • /
    • pp.73-94
    • /
    • 1998
  • 사면보강 또는 굴착면의 안정성 확보를 위해 쏘일례일링 공법이 종종 적용되고 있다. 그러나 오목형태 또는 볼록형태 모서리부와 같은 특수한 지역에 쏘일네일링 공법이 적용되어질 경우, 편기각보강형태, 즉 skew 쏘일네일 형태로 주로 시공쥐고 있다. 하지만, 지금까지 skew 쏘일례일링 공법이 적용된 굴착 모서리부에 대한 3차원 안정해석 및 거동분석 등에 대한 실험이나 연구결과는 미흡한 실정이며, 따라서 보강재의 배치형태, 삽입각도 및 길이 등 관련 설계변수값 결정에 관하여 주로 경험에 의존하고 있는 실정이다. 따글윽 본 연구의 주된 목적은, skew 쏘일네일링 공법이 오목형태 굴착 모서리부에 적용되는 경우 이에 대한 3차원 한계평형 안정성 평가기법을 제시하는 데 있다. 3차원 예상 파괴흙쐐기의 형상은 FLAC 프로그램 모델링 및 해석을 통해 결정하였으며, 모서리부에 대한 3차원 침투수압 산정식의 제시 및 해석시 다층지반조건의 고려 등이 포함되었다. 또한 제시된 3차원 안정해석법 을 이용해, 관련 설계변수들의 모서리부 안정성에 미치는 영향 정도를 분석하였다. 아울러 기 제시된 볼록형태 굴착 모서리부의 3차원 안정해석 법을 이용해 skew 쏘일네일 보강패턴의 효율성을 분석하였으며, 또한 굴착과정을 통해 전면부 벽체변위 및 인접지반의 침하 등이 상대적으로 문 제시되는 볼록형태 굴착 모서리부에 대한 변위예측을 위해 준 3차원 유한요소 해석기법 및 중첩기법 등의 적용을 시도하였다.

  • PDF

경사식구조물 오목부 구간의 파랑증폭 실험 (Hydraulic experiments on wave amplification at concave corner for rubble mound structures)

  • 김영택;안창현;이종인
    • 한국산학기술학회논문지
    • /
    • 제14권6호
    • /
    • pp.3074-3080
    • /
    • 2013
  • 평면 수리실험을 통해 경사식구조물의 오목부 구간에 대한 파고 증폭을 검토하였다. 실험에 적용된 경사식 구조물 단면은 1:1.5의 경사면에 테트라포드가 2층 피복되어 있는 형상이다. 실험파는 Bretschneider-Mitsuyasu 스펙트럼을 적용한 불규칙파를 적용하였으며, 오목부의 중심각도는 $120^{\circ}$, $140^{\circ}$$160^{\circ}$를 적용하였다. 실험결과에 따르면 오목부 구간에서의 입사파고에 대한 파고증폭비는 본 실험에서 적용한 실험조건 내에서 최대 1.5배로 계측되었으며, 상대파고비의 분포형태는 오목부의 중심에서 최대가 되고, 오목부를 중심으로 거리가 멀어질수록 감소했다 다시 증가하는 형태인 W자 형태를 나타내었다.

Measures to control deformation in deep excavation for cut and cover tunneling

  • Nam, Kyu-Tae;Jeong, Jae-Ho;Kim, Seung-Hyun;Kim, Kang-Hyun;Shin, Jong-Ho
    • Geomechanics and Engineering
    • /
    • 제29권3호
    • /
    • pp.339-348
    • /
    • 2022
  • The bored tunneling method is generally preferred for urban tunnel construction, However the cut & cover tunnel is still necessary for special conditions, such as metro station and access structures. In some case, deep excavation for cut & cover construction is planed of irregular and unusual shape, as a consequence, the convex and concave corner is often encountered during that excavation. In particular, discontinuity or imbalance of the support structure in the convex corner can lead to collapse, which may result in damages and casualties. In this study, the behavior of the convex corner of retaining structure were investigated using 3-dimensional numerical models established to be able to simulate the split-shaped behavior of convex corners. To improve the stability in the vicinity of the convex corner, several stabilizing measures were proposed and estimated numerically. It is found that linking two discretized wales at the convex corner can effectively perform the control of deformation. Furthermore, it was also confirmed that the stabilizing measures can be enhanced when the tie-material linking two discretized wales is installed at the depth of the maximum wall deflection.

Effects of 3D contraction on pebble flow uniformity and stagnation in pebble beds

  • Wu, Mengqi;Gui, Nan;Yang, Xingtuan;Tu, Jiyuan;Jiang, Shengyao
    • Nuclear Engineering and Technology
    • /
    • 제53권5호
    • /
    • pp.1416-1428
    • /
    • 2021
  • Pebble flow characteristics can be significantly affected by the configuration of pebble bed, especially for HTGR pebble beds. How to achieve a desired uniform flow pattern without stagnation is the top priority for reactor design. Pebbles flows inside some specially designed pebble bed with arc-shaped contraction configurations at the bottom, including both concave-inward and convex-outward shapes are explored based on discrete element method. Flow characteristics including pebble retention, residence-time frequency density, flow uniformity as well as axial velocity are investigated. The results show that the traditionally designed pebble bed with cone-shape bottom is not the most preferred structure with respect to flow pattern for reactor design. By improving the contraction configuration, the flow performance can be significantly enhanced. The flow in the convex-shape configuration featured by uniformity, consistency and less stagnation, is much more desirable for pebble bed design. In contrast, when the shape is from convex-forward to concave-inward, the flow shows more nonuniformity and stagnation in the corner although the average cross-section axial velocity is the largest due to the dominant middle pebbles.