• Title/Summary/Keyword: Comsol 5.2

Search Result 18, Processing Time 0.022 seconds

Design of Cell Frame Structure of Unit Cell for Molten Carbonate Fuel Cell Using CFD Analysis (CFD를 통한 용융탄산염 연료전지 단위전지용 셀 프레임 구조 설계)

  • LEE, SUNG-JOO;LIM, CHI-YOUNG;LEE, CHANG-WHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.56-63
    • /
    • 2018
  • In this study, a $100cm^2$ cell frame for a molten carbonate fuel cell was designed using CFD analysis. Electrochemical reactions, gas flow, and the heat transfer in $100cm^2$ cell frame were modeled using COMSOL Multiphysics. Two design variables such as the height of the cell frame and the length of the gas input area were determined to obtain minimized temperature distribution and uniform gas distribution. With two design parameter such as height of the cell frame and the length of the gas flow channel, the temperature difference in the cell fame was decreased to $5^{\circ}C$ and the gas uniformity in the flow channel were achieved.

FAST irradiations and initial post irradiation examinations - Part I

  • G. Beausoleil;L. Capriotti;B. Curnutt;R. Fielding;S. Hayes;D. Wachs
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4084-4094
    • /
    • 2022
  • The Advanced Fuels Campaign Fission Accelerated Steady-state Test (FAST) at Idaho National Laboratory (INL) completed its first irradiation cycle within the Advanced Test Reactor (ATR). The test focused on the irradiation of alloy fuel forms for use in sodium fast reactors. The first cycle of FAST testing was completed and four rodlets were removed for the initial post irradiation examination (PIE). The rodlet design and irradiation conditions were evaluated using Monte Carlo N-Particle (MCNP) for as-run power history and COMSOL for temperature analysis. These rodlets include a set of low burnups (~2.5 % fissions per initial metal atoms [%FIMA]), control rodlets, and a helium-bonded annular rodlet (4.7 %FIMA). Nondestructive PIE has been completed and includes visual inspection, neutron radiography and gamma scanning of the FAST capsules and rodlets. Radiography confirmed the integrity of the experiments, revealed that the annulus in the annular fuel was filled at a modest burnup (4.7 %FIMA), and indicated potential slumping of the cooler rodlets at lower burnup. Precision gamma scanning indicated mostly usual fission product behavior, except for cesium in the He-bonded annular fuel. Future destructive PIE will be necessary to fully interpret the effects of accelerated irradiation on U-Zr metallic fuel behavior.

Design of Micro-structured Small Scale Energy Harvesting System for Pervasive Computing Applications (편재형 컴퓨팅을 위한 미세구조 에너지 하베스팅 시스템의 구조 설계)

  • Min, Chul-Hong;Kim, Tae-Seon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.918-924
    • /
    • 2009
  • In this paper, we designed micro-structured electromagnetic transducers for energy harvesting and verified the performance of proposed transducers using finite element analysis software, COMSOL Multiphysics. To achieve higher energy transduce efficiency, around the magnetic core material, three-dimensional micro-coil structures with high number of turns are fabricated using semiconductor fabrication process technologies. To find relations between device size and energy transduce efficiency, generated electrical power values of seven different sizes of transducers ($3{\times}3\;mm^2$, $6{\times}6\;mm^2$, $9{\times}9\;mm^2$, $12{\times}12\;mm^2$, $15{\times}15\;mm^2$, $18{\times}18\;mm^2$, and $21{\times}21\;mm^2$) are analyzed on various magnetic flux density environment ranging from 0.84 T to 1.54 T and it showed that size of $15{\times}15\;mm^2$ device can generate $991.5\;{\mu}W$ at the 8 Hz of environmental kinetic energy. Compare to other electromagnetic energy harvesters, proposed system showed competitive performance in terms of power generation, operation bandwidth and size. Since proposed system can generate electric power at very low frequency of kinetic energy from typical life environment including walking and body movement, it is expected that proposed system can be effectively applied to various pervasive computing applications including power source of embodied medical equipment, power source of RFID sensors and etc. as an secondary power sources.

Research of shape optimization for High-Efficiency Electronic cold modules taking into consideration thickness and thermoelectric element mounting position (두께와 열전소자 부착위치를 고려한 자동차용 고효율 전자 냉온 모듈 형상 최적화 연구)

  • Kim, Jae-Won;Lee, Jung-Ho;Park, Chan-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8350-8356
    • /
    • 2015
  • The demand for user convenient devices in automotive applications are fast growing, mainly driven by the customer's requirement for higher efficiency and more features. In important such feature is the cold module for cars, which are convenient luxuries that warm or cool drinks placed in the cup holder by means of a thermoelectric element. In present study, we would like to find out the optimal thickness of the cup holder and mounting position of the thermoelectric element through experiments under various testing conditions and thermal analysis. The resulting thermal distribution of the primary area of thermal analysis was found to be lowest when the thickness was 2.5 mm. The temperature distribution was also lowest when the thermal element was positioned underneath the holder (A-type).

Simulation of Resonance Shift and Quality Factor for Opto-fluidic Ring Resonator (OFRR) Biosensors (광-유체링공진기(OFRR) 바이오센서에 관한 공진이동과 양호도의 시뮬레이션)

  • Cho, Han-Keun;Han, Jin-Woo;Yang, Gil-Mo
    • Journal of Biosystems Engineering
    • /
    • v.36 no.1
    • /
    • pp.23-32
    • /
    • 2011
  • In this work, the finite element method was used to investigate the shifts of resonance frequencies and quality factor of whispering-gallery-mode (WGM) for an opto-fluidic ring resonator (OFRR) biosensor. To describe the near-field radiation transfer, the time-domain Maxwell's equations were employed and solved by using the in-plane TE wave application mode of the COMSOL Multiphysics with RF module. The OFRR biosensor model under current study includes a glass capillary with a diameter of 100 mm and wall thickness of 3.0 mm. The resonance energy spectrum curves in the wavelength range from 1545 nm to 1560 nm were examined under different biosensing conditions. We mainly studied the sensitivity of resonance shifts affected by changes in the effective thickness of the sensor resonator ring with a 3.0 mm thick wall, as well as changes in the refractive index (RI) of the medium inside ring resonators with both 2.5 mm and 3.0 mm thick walls. In the bulk RI detection, a sensitivity of 23.1 nm/refractive index units (RIU) is achieved for a 2.5 mm thick ring. In small molecule detection, a sensitivity of 26.4 pm/nm is achieved with a maximum Q-factor of $6.3{\times}10^3$. These results compare favorably with those obtained by other researchers.

The Effect of using Gamma Titanium RF Electrodes on the Ablation Volume during the Radiofrequency Ablation Process

  • Mohammed S. Ahmed;Mohamed Tarek El-Wakad;Mohammed A. Hassan
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.2
    • /
    • pp.183-192
    • /
    • 2023
  • Radiofrequency ablation (RFA) is an alternative treatment for liver cancer to the surgical intervention preferred by surgeons. However, the main challenge remains the use of RF for the ablation of large tumours (i.e., tumours with a diameter of >3 cm). For large tumours, RFA takes a large duration in the ablation process compared with surgery, which increases patient pain. Therefore, RFA for large tumours is not preferred by surgeons. The currently materials used in RF electrodes, such as the nickeltitanium alloy (nitinol), are characterized by low thermal and electrical conductivities. On the other hand, the use of materials that have high thermal and electrical conductivities, such as titanium aluminide alloy (gamma titanium), produces more thermal energy for tumours. In this paper, we developed a cool-tip RF electrode model that uses nickel-titanium alloy and replaced it with titanium aluminide alloy by using the finite element model (FEM). The aim of this paper is to study the effect of the thermal and electrical conductivities of gamma titanium on the ablation volume. Results showed that the proposed design of the electrode increased the ablation rate by 1 cm3 /minute and 6.3 cm3/10 minutes, with a decrease in the required time ablation. Finally, the proposed model reduces the ablation time and damages healthy tissue while increasing the ablation volume from 22.5% cm3 to 62.5% cm3 in ten minutes compared to recent studies.

MULTI-PHYSICAL SIMULATION FOR THE DESIGN OF AN ELECTRIC RESISTOJET GAS THRUSTER IN THE NEXTSAT-1 (차세대 인공위성 전기저항제트 가스추력기의 다물리 수치모사)

  • Chang, S.M.;Choi, J.C.;Han, C.Y.;Shin, G.H.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.112-119
    • /
    • 2016
  • NEXTSat-1 is the next-generation small-size artificial satellite system planed by the Satellite Technology Research Center(SatTReC) in Korea Advanced Institute of Science and Technology(KAIST). For the control of attitude and transition of the orbit, the system has adopted a RHM(Resisto-jet Head Module), which has a very simple geometry with a reasonable efficiency. An axisymmetric model is devised with two coil-resistance heaters using xenon(Xe) gas, and the minimum required specific impulse is 60 seconds under the thrust more than 30 milli-Newton. To design the module, seven basic parameters should be decided: the nozzle shape, the power distribution of heater, the pressure drop of filter, the diameter of nozzle throat, the slant length and the angle of nozzle, and the size of reservoir, etc. After quasi one-dimensional analysis, a theoretical value of specific impulse is calculated, and the optima of parameters are found out from the baseline with a series of multi-physical numerical simulations based on the compressible Navier-Stokes equations for gas and the heat conduction energy equation for solid. A commercial code, COMSOL Multiphysics is used for the computation with a FEM (finite element method) based numerical scheme. The final values of design parameters indicate 5.8% better performance than those of baseline design after the verification with all the tuned parameters. The present method should be effective to reduce the time cost of trial and error in the development of RHM, the thruster of NEXTSat-1.

Analysis on Change in Electrical Transmission Characteristic about FSS Radome on Flight Scenario (비행 시나리오에 따른 FSS 레이돔의 전파 투과 특성 변화 분석)

  • Kim, Sunhwi;Bae, Hyung Mo;Kim, Jihyuk;Lee, Namkyu;Nam, Juyeong;Park, Sehjin;Cho, Hyung Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.6
    • /
    • pp.11-20
    • /
    • 2019
  • A Radome protects the radar from the external environment, and as a part of the stealth technology, a frequency-selective surface (FSS) was applied to the radome. Our study investigates the changes in the electrical transmission characteristics of the missile's FSS radome due to aerodynamic heating in various flight scenarios. Accordingly, we designed a FSS radome with a Jerusalem-cross(JSC) geometry and referred the missile flight scenario in the precedent research. Subsequently, electrical transmission characteristics affected by aerodynamic heating were numerically analyzed over time according to the position of radome. As a result, we found that the average transmission value maximally varies -14.3 dB compared to the initial bandwidth owing to changes in electrical transmission characteristics in flight scenarios.