• Title/Summary/Keyword: Computing time-delay

Search Result 222, Processing Time 0.02 seconds

Q-NAV: NAV Setting Method based on Reinforcement Learning in Underwater Wireless Networks (Q-NAV: 수중 무선 네트워크에서 강화학습 기반의 NAV 설정 방법)

  • Park, Seok-Hyeon;Jo, Ohyun
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.6
    • /
    • pp.1-7
    • /
    • 2020
  • The demand on the underwater communications is extremely increasing in searching for underwater resources, marine expedition, or environmental researches, yet there are many problems with the wireless communications because of the characteristics of the underwater environments. Especially, with the underwater wireless networks, there happen inevitable delay time and spacial inequality due to the distances between the nodes. To solve these problems, this paper suggests a new solution based on ALOHA-Q. The suggested method use random NAV value. and Environments take reward through communications success or fail. After then, The environments setting NAV value from reward. This model minimizes usage of energy and computing resources under the underwater wireless networks, and learns and setting NAV values through intense learning. The results of the simulations show that NAV values can be environmentally adopted and select best value to the circumstances, so the problems which are unnecessary delay times and spacial inequality can be solved. Result of simulations, NAV time decreasing 17.5% compared with original NAV.

A Proactive Dissemination Protocol using Residual Energy and Signal Strength for WSNs (무선 센서 네트워크에서 에너지 잔량과 신호세기를 이용한 데이터 전송 프로토콜)

  • Park, Soo-Yeon;Kim, Moon-Seong;Jeong, Eui-Hoon;Bang, Young-Cheo
    • Journal of Internet Computing and Services
    • /
    • v.11 no.4
    • /
    • pp.33-39
    • /
    • 2010
  • In this paper, a data dissemination protocol that transmits data collected for Wireless Sensor Networks (WSNs) is newly proposed, and the proposed proactive protocol takes into account energy consumption minimized and delay time disseminated. The well-known SPMS (Shortest Path Mined SPIN) forms the shortest path-based routing table obtained by Bellman Ford Algorithm (BFA) and disseminates data using a multi-hop path in order to minimize energy consumption. The mentioned properties of SPMS cause memory burden to create and maintain the routing tables. In addition, whenever BFA is executed, it is necessary to suffer from the energy consumption and traffic occurred. In order to overcome this problem, a proactive dissemination protocol using Residual Energy and Signal Strength, called RESS, is proposed in this paper. Simulation results show that RESS outperforms SPMS up to 84% in terms of the number of traffic messages and the transmitted delay time of RESS is similar to that of SPMS using the shortest path.

Design and Implementation HDTV Relay Transmission System for Overlay Multicast (오버레이 멀티캐스트를 위한 HDTV 중계전송 시스템 설계 및 구현)

  • Son, Seung-Chul;Kwag, Yong-Wan;Heo, Kwon;Lee, Hyung-Ok;Nam, Ji-Seung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1A
    • /
    • pp.57-65
    • /
    • 2007
  • The overlay multicast that has been recently presented as IP alternative for the IP multicast has been getting much persuasion by the computing power of the hardware and the advancement of the network techniques to enforce Routing in application-level. In an overlay multicast, the system resource and the network bandwidth must be utilized efficiently to service real-time HDTV images. Specifically, the system must consider the delay and the jitter that can be incurred at the application-level. In this paper, we implement a server and a client to broadcast HDTV, in the session composed by the existing overlay multicast protocol. The broadcasting server performs the service using a TV tuner, An HDTV camcorder, and files, clients constituting a multicast group relay the received data to other clients. At this time, the information that the clients report periodically, including their delay and the network state, to the server is used as an important information to maintain an overlay session. The implementation is based on the DirectX and its performance is evaluated by the LAN test bed that has been set.

Regionalized TSCH Slotframe-Based Aerial Data Collection Using Wake-Up Radio (Wake-Up Radio를 활용한 지역화 TSCH 슬롯프레임 기반 항공 데이터 수집 연구)

  • Kwon, Jung-Hyok;Choi, Hyo Hyun;Kim, Eui-Jik
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.2
    • /
    • pp.1-6
    • /
    • 2022
  • This paper presents a regionalized time slotted channel hopping (TSCH) slotframe-based aerial data collection using wake-up radio. The proposed scheme aims to minimize the delay and energy consumption when an unmanned aerial vehicle (UAV) collects data from sensor devices in the large-scale service area. To this end, the proposed scheme divides the service area into multiple regions, and determines the TSCH slotframe length for each region according to the number of cells required by sensor devices in each region. Then, it allocates the cells dedicated for data transmission to the TSCH slotframe using the ID of each sensor device. For energy-efficient data collection, the sensor devices use a wake-up radio. Specifically, the sensor devices use a wake-up radio to activate a network interface only in the cells allocated for beacon reception and data transmission. The simulation results showed that the proposed scheme exhibited better performance in terms of delay and energy consumption compared to the existing scheme.

Design of Systolic Multipliers in GF(2$^{m}$ ) Using an Irreducible All One Polynomial (기약 All One Polynomial을 이용한 유한체 GF(2$^{m}$ )상의 시스톨릭 곱셈기 설계)

  • Gwon, Sun Hak;Kim, Chang Hun;Hong, Chun Pyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8C
    • /
    • pp.1047-1054
    • /
    • 2004
  • In this paper, we present two systolic arrays for computing multiplications in CF(2$\^$m/) generated by an irreducible all one polynomial (AOP). The proposed two systolic mays have parallel-in parallel-out structure. The first systolic multiplier has area complexity of O(㎡) and time complexity of O(1). In other words, the multiplier consists of m(m+1)/2 identical cells and produces multiplication results at a rate of one every 1 clock cycle, after an initial delay of m/2+1 cycles. Compared with the previously proposed related multiplier using AOP, our design has 12 percent reduced hardware complexity and 50 percent reduced computation delay time. The other systolic multiplier, designed for cryptographic applications, has area complexity of O(m) and time complexity of O(m), i.e., it is composed of m+1 identical cells and produces multiplication results at a rate of one every m/2+1 clock cycles. Compared with other linear systolic multipliers, we find that our design has at least 43 percent reduced hardware complexity, 83 percent reduced computation delay time, and has twice higher throughput rate Furthermore, since the proposed two architectures have a high regularity and modularity, they are well suited to VLSI implementations. Therefore, when the proposed architectures are used for GF(2$\^$m/) applications, one can achieve maximum throughput performance with least hardware requirements.

A Study on Cooling Effect and Power Control of a Mini Ozonizer (소형 오존발생장치의 전력제어와 냉각효과에 관한 연구)

  • Woo, Sung-Hoon;Park, Seung-Cho;Yoon, Sung-Yoon;Park, Jee-Ho;Woo, Jung-In
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.1
    • /
    • pp.97-103
    • /
    • 2006
  • In this paper, a control method of a mini ozone generator is proposed, and also a cooling technique is described which is cooling down the flowing air gap into a silent discharger to $2^{\circ}C$ to generate ozone of high density and diffusing power. As the digital control system for this method, a double feedback loop is designed which detects the voltage and current of equivalent capacitor of the discharger and compensates for the poor power waveform caused by the noise at high discharging frequency. During the plant modeling of this system, computing time factor is considered as a unique parameter of the power system to improve the transient responses with regard to fluctuating load and to replenish the computing time delay of the controller. Through the experiment, sinusoidal input current for discharger can be acquired and all the effectiveness of this accurate control system over unstable ozone discharger are proved.

Efficient Virtual Machine Resource Management for Media Cloud Computing

  • Hassan, Mohammad Mehedi;Song, Biao;Almogren, Ahmad;Hossain, M. Shamim;Alamri, Atif;Alnuem, Mohammed;Monowar, Muhammad Mostafa;Hossain, M. Anwar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1567-1587
    • /
    • 2014
  • Virtual Machine (VM) resource management is crucial to satisfy the Quality of Service (QoS) demands of various multimedia services in a media cloud platform. To this end, this paper presents a VM resource allocation model that dynamically and optimally utilizes VM resources to satisfy QoS requirements of media-rich cloud services or applications. It additionally maintains high system utilization by avoiding the over-provisioning of VM resources to services or applications. The objective is to 1) minimize the number of physical machines for cost reduction and energy saving; 2) control the processing delay of media services to improve response time; and 3) achieve load balancing or overall utilization of physical resources. The proposed VM allocation is mapped into the multidimensional bin-packing problem, which is NP-complete. To solve this problem, we have designed a Mixed Integer Linear Programming (MILP) model, as well as heuristics for quantitatively optimizing the VM allocation. The simulation results show that our scheme outperforms the existing VM allocation schemes in a media cloud environment, in terms of cost reduction, response time reduction and QoS guarantee.

Two Level Bin-Packing Algorithm for Data Allocation on Multiple Broadcast Channels (다중 방송 채널에 데이터 할당을 위한 두 단계 저장소-적재 알고리즘)

  • Kwon, Hyeok-Min
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.9
    • /
    • pp.1165-1174
    • /
    • 2011
  • In data broadcasting systems, servers continuously disseminate data items through broadcast channels, and mobile client only needs to wait for the data of interest to present on a broadcast channel. However, because broadcast channels are shared by a large set of data items, the expected delay of receiving a desired data item may increase. This paper explores the issue of designing proper data allocation on multiple broadcast channels to minimize the average expected delay time of all data items, and proposes a new data allocation scheme named two level bin-packing(TLBP). This paper first introduces the theoretical lower-bound of the average expected delay, and determines the bin capacity based on this value. TLBP partitions all data items into a number of groups using bin-packing algorithm and allocates each group of data items on an individual channel. By employing bin-packing algorithm in two step, TLBP can reflect a variation of access probabilities among data items allocated on the same channel to the broadcast schedule, and thus enhance the performance. Simulation is performed to compare the performance of TLBP with three existing approaches. The simulation results show that TLBP outperforms others in terms of the average expected delay time at a reasonable execution overhead.

A Design of Update Propagation Algorithm for Replica Consistency of Transaction (트랜잭션의 복제 일관성을 위한 갱신 전파 알고리즘 설계)

  • Lee Byung-Wook
    • Journal of Internet Computing and Services
    • /
    • v.4 no.6
    • /
    • pp.87-93
    • /
    • 2003
  • Data Replication makes distributed system and database system improved in availability and performance. But it is difficult to keep strict consistency in data update. Existing algorithms keep strict consistency, but have problems of cost a great deal and delay time. It is to introduce hybrid update propagation algorithm which permits eager update for original copy and propagates lazy update for other copies. Hybrid update propagation algorithm also permits group update in ownership. This algorithm menages replica version in order to control group update consistency. Consistency and performance is improved by combining eager update and lazy update with group ownership. Simulation shows improvement of transaction throughput and response time depending on application and execution environment.

  • PDF

Task-Level Dynamic Voltage Scaling for Embedded System Design: Recent Theoretical Results

  • Kim, Tae-Whan
    • Journal of Computing Science and Engineering
    • /
    • v.4 no.3
    • /
    • pp.189-206
    • /
    • 2010
  • It is generally accepted that dynamic voltage scaling (DVS) is one of the most effective techniques of energy minimization for real-time applications in embedded system design. The effectiveness comes from the fact that the amount of energy consumption is quadractically proportional to the voltage applied to the processor. The penalty is the execution delay, which is linearly and inversely proportional to the voltage. According to the granularity of tasks to which voltage scaling is applied, the DVS problem is divided into two subproblems: inter-task DVS problem, in which the determination of the voltage is carried out on a task-by-task basis and the voltage assigned to the task is unchanged during the whole execution of the task, and intra-task DVS problem, in which the operating voltage of a task is dynamically adjusted according to the execution behavior to reflect the changes of the required number of cycles to finish the task before the deadline. Frequent voltage transitions may cause an adverse effect on energy minimization due to the increase of the overhead of transition time and energy. In addition, DVS needs to be carefully applied so that the dynamically varying chip temperature should not exceed a certain threshold because a drastic increase of chip temperature is highly likely to cause system function failure. This paper reviews representative works on the theoretical solutions to DVS problems regarding inter-task DVS, intra-task DVS, voltage transition, and thermal-aware DVS.