BOD의 최적화 문제는 논리합성과 형식검증 영역에서 필수적인 것으로 인식되고 있다. 변수 순서화 문제는 BOD의 크기와 형태에 직접적인 영향을 미치므로, 적절한 변수 순서를 구하는 문제는 매우 중요한 문제이다, 본 논문에서 는 점진적 시프팅이라 부르는 새로운 변수 순서화 알고리듬을 소개한다. 제안된 알고리듬은 기존의 시프팅 알고리듬에서의 탐색공간을 절반이하로 줄이며, 성능의 저하없이 계산시간을 크게 감소시킬 수 있다. 더욱이 점진적 시프팅 알고리듬은 시프팅 알고리듬을 비롯한 다른 변수 순서화 알고리듬에 비해 매우 단순하다. 제안된 알고리듬은 많은 벤치마크 회로를 이용한 실험에서 그 효율성이 입증되었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권4호
/
pp.1276-1295
/
2023
Sensor networks are now an essential aspect of wireless communication, especially with the introduction of new gadgets and protocols. Their ability to be deployed anywhere, especially where human presence is undesirable, makes them perfect choices for remote observation and control. Despite their vast range of applications from home to hostile territory monitoring, limited battery power remains a limiting factor in their efficacy. To analyze and transmit data, it requires intelligent use of available battery power. Several studies have established effective routing algorithms based on clustering. However, choosing optimal cluster heads and similarity measures for clustering significantly increases computing time and cost. This work proposes and implements a simple two-phase technique of route creation and maintenance to ensure route reliability by employing nature-inspired ant colony optimization followed by the fuzzy decision engine (FDE). Benchmark methods such as PSO, ACO and GWO are compared with the proposed HRCM's performance. The objective has been focused towards establishing the superiority of proposed work amongst existing optimization methods in a standalone configuration. An average of 15% improvement in energy consumption followed by 12% improvement in latency reduction is observed in proposed hybrid model over standalone optimization methods.
Water cycle algorithm (WCA) has been a very effective optimization technique for complex engineering problems. This study employs the WCA for simultaneous prediction of heating load (LH) and cooling load (LC) in residential buildings. This algorithm is responsible for optimally tuning a neural network (NN). Utilizing 614 records, the behavior of the LH and LC is explored and the captured knowledge is then used to predict for 154 unanalyzed building conditions. Since the WCA is a population-based algorithm, different numbers of the searching agents were tested to find the most optimum configuration. It was observed that the best solution is discovered by 500 agents. A comparison with five newly-developed benchmark optimizers, namely equilibrium optimizer (EO), multi-tracker optimization algorithm (MTOA), slime mould algorithm (SMA), multi-verse optimizer (MVO), and electromagnetic field optimization (EFO) revealed that the WCANN predicts the desired parameters with considerably larger accuracy. Obtained root mean square errors (1.4866, 2.1296, 2.8279, 2.5727, 2.5337, and 2.3029 for the LH and 2.1767, 2.6459, 3.1821, 2.9732, 2.9616, and 2.6890 for the LC) indicated that the most reliable prediction was presented by the proposed model. The EFONN, however, provided a more time-effective solution. Lastly, an explicit predictive formula was elicited from the WCANN.
The conventional segregated finite element formulation produces a small and simple matrix at each step than in an integrated formulation. And the memory and cost requirements of computations are significantly reduced because the pressure equation for the mass conservation of the Navier-Stokes equations is constructed only once if the mesh is fixed. However, segregated finite element formulation solves Poisson equation of elliptic type so that it always needs a pressure boundary condition along a boundary even when physical information on pressure is not provided. On the other hand, the conventional integrated finite element formulation in which the governing equations are simultaneously treated has an advantage over a segregated formulation in the sense that it can give a more robust convergence behavior because all variables are implicitly combined. Further it needs a very small number of iterations to achieve convergence. However, the saddle-paint-type matrix (SPTM) in the integrated formulation is assembled and preconditioned every time step, so that it needs a large memory and computing time. Therefore, we newly proposed the P2PI semi-segregation formulation. In order to utilize the fact that the pressure equation is assembled and preconditioned only once in the segregated finite element formulation, a fixed symmetric SPTM has been obtained for the continuity constraint of the present semi-segregation finite element formulation. The momentum equation in the semi-segregation finite element formulation will be separated from the continuity equation so that the saddle-point-type matrix is assembled and preconditioned only once during the whole computation as long as the mesh does not change. For a comparison of the CPU time, accuracy and condition number between the two methods, they have been applied to the well-known benchmark problem. It is shown that the newly proposed semi-segregation finite element formulation performs better than the conventional integrated finite element formulation in terms of the computation time.
스마트 시설환경의 제어 요소는 난방기, 창 개폐, 수분/양액 밸브 개폐, 환풍기, 제습기 등 직접적으로 시설환경의 조절에 관여하는 인자와 정보 교환을 위한 통신, 사용자 인터페이스 등 간접적으로 제어에 관련된 요소들이 복합적으로 존재한다. PID 제어와 같이 하는 수학적 논리를 바탕으로 한 제어와 전문 관리자의 지식을 기반으로 한 비선형 학습 모델에 의한 제어 등이 공존할 수 있다. 이러한 다양한 요소들을 복합적으로 연동시키기 위해선 기존의 시퀀스 기반 제어 방식에는 한계가 있을 수 있다. 관행의 방식과 같이 시계열 상에서 획득한 충분한 데이터를 이용하여 제어의 양과 시점을 결정하는 방식은 예외 상황에 충분히 대처하기 어려운 단점이 있을 수 있다. 이러한 예외 상황은 자연적인 조건의 변화에 따라 불가피하게 발생하는 경우와 시스템의 오류에 기인하는 경우로 나뉠 수 있다. 본 연구에서는 실시간으로 변하는 시설환경 내의 다양한 환경요소를 실시간으로 분석하고 상응하는 제어를 수행하여 수학적이며 예측 가능한 논리에 의해 준비된 제어시스템을 보완할 방법을 연구하였다. 과거의 고성능 컴퓨팅(HPC; High Performance Computing)은 다수의 컴퓨터를 고속 네트워크로 연동하여 집적적으로 연산능력을 향상시킨 기술로 비용과 규모의 측면에서 많은 투자를 필요로 하는 첨단 고급 기술이었다. 핸드폰과 모바일 장비의 발달로 인해 소형 마이크로프로세서가 발달하여 근래 2 Ghz의 클럭 속도에 이르는 어플리케이션 프로세서(AP: Application Processor)가 등장하기도 하였다. 상대적으로 낮은 성능에도 불구하고 저전력 소모와 플랫폼의 소형화를 장점으로 한 AP를 시설환경의 실시간 제어에 응용하기 위한 방안을 연구하였다. CPU의 클럭, 메모리의 양, 코어의 수량을 다음과 같이 달리한 3가지 시스템을 비교하여 AP를 이용한 마이크로 클러스터링 기술의 성능을 비교하였다.1) 1.5 Ghz, 8 Processors, 32 Cores, 1GByte/Processor, 32Bit Linux(ARMv71). 2) 2.0 Ghz, 4 Processors, 32 Cores, 2GByte/Processor, 32Bit Linux(ARMv71). 3) 1.5 Ghz, 8 Processors, 32 Cores, 2GByte/Processor, 64Bit Linux(Arch64). 병렬 컴퓨팅을 위한 개발 라이브러리로 MPICH(www.mpich.org)와 Open-MP(www.openmp.org)를 이용하였다. 2,500,000,000에 이르는 정수 중 소수를 구하는 연산에 소요된 시간은 1)17초, 2)13초, 3)3초 이었으며, $12800{\times}12800$ 크기의 행렬에 대한 2차원 FFT 연산 소요시간은 각각 1)10초, 2)8초, 3)2초 이었다. 3번 경우는 클럭속도가 3Gh에 이르는 상용 데스크탑의 연산 속도보다 빠르다고 평가할 수 있다. 라이브러리의 따른 결과는 근사적으로 동일하였다. 선행 연구에서 획득한 3차원 계측 데이터를 1초 단위로 3차원 선형 보간법을 수행한 경우 코어의 수를 4개 이하로 한 경우 근소한 차이로 동일한 결과를 보였으나, 코어의 수를 8개 이상으로 한 경우 앞선 결과와 유사한 경향을 보였다. 현장 보급 가능성, 구축비용 및 전력 소모 등을 종합적으로 고려한 AP 활용 마이크로 클러스터링 기술을 지속적으로 연구할 것이다.
최근 들어 DNA 컴퓨팅이 활발하게 연구되면서, DNA 컴퓨팅에서 가장 기본적이고도 중요한 DNA 서열 디자인 문제가 부각되고 있다. 기존의 연구에서 DNA 서열 디자인 문제를 다중목적 최적화 문제로 정의하고, elitist non-dominated sorting genetic algorithm(NSGA-II)를 이용하여 성공적으로 DNA 서열을 디자인하였다. 그런데, NSGA-II는 계산속도가 느리다는 단점이 있어서, 이를 극복하기 위해 본 논문에서는 $\varepsilon$-다중목적함수 진화알고리즘(r-Multiobjective evolutionary algorithm, $\varepsilon$-MOEA)을 DNA 서열 디자인에 이용하였다. 우선, 두 알고리즘의 성능을 보다 자세히 비교하기 위해서 DTLZ2 벤치 마크 문제에 대해서 적용한 결과, 목적함수의 개수가 작은 경우에는 큰 차이가 없으나, 목적함수의 개수가 많을 경우에는 $\varepsilon$-MOEA가 NSGA-II에 대해서 최적해를 찾는 정도(Convergence)와 다양한 해를 찾는 정도 (diversity)에 있어서 각각 $70\%,\;73\%$ 향상된 성능을 보여주었고, 또한 최적해를 찾는 속도도 비약적으로 개선되었다. 이러한 결과를 바탕으로 기존의 DNA 서열 디자인 방법론으로 디자인된 DNA 서열들과 7-순환외판원 문제 해결에 필요한 DNA 서열을 NSGA-II와 $\varepsilon$-MOEA로 재디자인하였다. 대부분의 경우 $\varepsilon$-MOEA가 우수한 결과를 보였고, 특히 7-순환외판원 문제에 대해서 NSGA-II와 비교하여 convergence와 diversity의 측면에서 유사한 결과를 2배 이상 빨리 발견하였고, 동일한 계산 시간을 이용해서는 $22\%$ 정도 보다 다양하게 해를 발견하였으며, $92\%$ 우수한 최적해를 발견하는 것을 확인하였다.
본 논문에서는 BDD(Binary Decision Diagrams) 를 이용한 다단계 리드뮬러회로 합성 방법을 제시한다. 기존의 다단계 노리 합성 도구인 FACTOR에서는 논리 함수를 입력 분 할에 의해 맵 형태의 행렬로 표현하고 행렬 연산을 통해 다단계 회로를합성한다. 이 방법은 논리 합성의 입력으로 맵을 사용하기 때문에 입력 수에 따라 기억 공간이 지수 적으로 중가하고 이에 비례하는 연산 시간에 필요하게 되어 대규모 회로에서 잘 동작 되지 않는다. 이러한 단점을 해결하기 위해 기존의 방법과는 다른 새로운 시도로서 BDD 표현에 의해 최선의 패턴을 선택하므로 최소화된 다단계 리드뮬러회로를 구현한다. 본 논문에서 제시한 방법을 사용한 benchmark 회로의 실험 결과, 대부분의 회로에서 기존의 결과(2)에 비해 개선된 결과를 보인다. 특히, 대칭 함수에 대해서는 최적에 가까운 결과를 보인다. 대규모 회로에서 합성 결과를 개선하기 위해 최선의 입력 분할을 고려하므로 기존의 결과보다 개선된 결과를 얻었다.
네트워크를 통해 전송되는 데이타의 양이 급속히 증가함에 따라 확장성 있는 저장 시스템에 대한 사용자 요구가 증가하고 있다. 네트워크 연결형 자료 저장 시스템인 SAN(Storage Area Network)은 호스트와 디스크를 광채널 스위치로 연결하는 구조로서 저장 공간과 서버에 대한 확장성을 제공한다. SAN 환경에서는 다수의 호스트가 네트워크에 연결된 저장 장치를 공유하므로 공유 데이타에 대한 일관성 유지가 필요하다. 이를 위해 각 호스트가 수정한 데이타를 즉시 디스크에 반영하는 방법을 사용하고 있지만 이는 느린 디스크 접근 시간(Disk Access Time)으로 인해 시스템의 성능을 저하시키는 요인이 된다. 본 논문에서는 필요한 공유 데이타를 다른 호스트의 메모리를 통해서 직접 전송 받을 수 있도록 하여 공유 데이타의 접근 속도를 향상시킬 수 있는 전역 버퍼 관리자의 설계와 구현에 대해 소개한다. SANtopia 전역 버퍼 관리자는 SAN에 연결된 호스트들이 서로의 버퍼 캐시를 공유하도록 함으로써 블록 데이타로의 빠른 접근을 가능하게 한다. 마이크로 벤치마크를 통한 블록 단위 I/O의 성능 측정 결과, 전역 버퍼 관리자를 사용하는 것이 기존의 디스크 I/O를 사용하는 방법에 비해 약 1.8-12.8배 정도 빠른 성능을 보였으며 파일 시스템 벤치마크를 통한 성능 측정 결과. 전역 버퍼 관리자를 사용한 SANtopia 파일 시스템은 사용하지 않은 것과 비교해서 디렉터리 파일 시스템 콜의 경우 약 1.06배 정도 빠르고 일반 파일시스템 콜은 약 1.14배 정도 빠른 성능을 보였다.
Kim, Minseong;Han, Youngsun;Cho, Myeongjin;Park, Chanhyun;Kim, Seon Wook
IEIE Transactions on Smart Processing and Computing
/
제4권3호
/
pp.169-172
/
2015
Dalvik is a virtual machine (VM) that is designed to run Java-based Android applications. A trace-based just-in-time (JIT) compilation technique is currently employed to improve performance of the Dalvik VM. However, due to runtime compilation overhead, the trace-based JIT compiler provides only a few simple optimizations. Moreover, because each trace contains only a few instructions, the trace-based JIT compiler inherently exploits fewer optimization and parallelization opportunities than a method-based JIT compiler that compiles method-by-method. So we propose a new method-based JIT compiler, named DEX2C, in order to improve performance by finding more opportunities for both optimization and parallelization in Android applications. We employ C code as an intermediate product in order to find more optimization opportunities by using the GNU C Compiler (GCC), and we will detect parallelism by using the Intel C/C++ parallel compiler and the AESOP compiler in our future work. In this paper, we introduce our DEX2C compiler, which dynamically translates Dalvik bytecodes (DEX) into C code with method granularity. We also describe a new method-based JIT interface in the Dalvik VM for the DEX2C compiler. Our experiment results show that our compiler and its interface achieve significant performance improvement by up to 15.2 times and 3.7 times on average, in Element Benchmark, and up to 2.8 times for FFT in Smartbench.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권1호
/
pp.204-226
/
2018
Big data processing applications have been migrated into cloud gradually, due to the advantages of cloud computing. Hadoop Distributed File System (HDFS) is one of the fundamental support systems for big data processing on MapReduce-like frameworks, such as Hadoop and Spark. Since HDFS is not aware of the co-location of virtual machines in the cloud, the default scheme of block allocation in HDFS does not fit well in the cloud environments behaving in two aspects: data reliability loss and performance degradation. In this paper, we present a novel location-aware data block allocation strategy (LDBAS). LDBAS jointly optimizes data reliability and performance for upper-layer applications by allocating data blocks according to the locations and different processing capacities of virtual nodes in the cloud. We apply LDBAS to two stages of data allocation of HDFS in the cloud (the initial data allocation and data recovery), and design the corresponding algorithms. Finally, we implement LDBAS into an actual Hadoop cluster and evaluate the performance with the benchmark suite BigDataBench. The experimental results show that LDBAS can guarantee the designed data reliability while reducing the job execution time of the I/O-intensive applications in Hadoop by 8.9% on average and up to 11.2% compared with the original Hadoop in the cloud.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.