• Title/Summary/Keyword: Computing System

Search Result 5,921, Processing Time 0.032 seconds

A Study on Efficient AI Model Drift Detection Methods for MLOps (MLOps를 위한 효율적인 AI 모델 드리프트 탐지방안 연구)

  • Ye-eun Lee;Tae-jin Lee
    • Journal of Internet Computing and Services
    • /
    • v.24 no.5
    • /
    • pp.17-27
    • /
    • 2023
  • Today, as AI (Artificial Intelligence) technology develops and its practicality increases, it is widely used in various application fields in real life. At this time, the AI model is basically learned based on various statistical properties of the learning data and then distributed to the system, but unexpected changes in the data in a rapidly changing data situation cause a decrease in the model's performance. In particular, as it becomes important to find drift signals of deployed models in order to respond to new and unknown attacks that are constantly created in the security field, the need for lifecycle management of the entire model is gradually emerging. In general, it can be detected through performance changes in the model's accuracy and error rate (loss), but there are limitations in the usage environment in that an actual label for the model prediction result is required, and the detection of the point where the actual drift occurs is uncertain. there is. This is because the model's error rate is greatly influenced by various external environmental factors, model selection and parameter settings, and new input data, so it is necessary to precisely determine when actual drift in the data occurs based only on the corresponding value. There are limits to this. Therefore, this paper proposes a method to detect when actual drift occurs through an Anomaly analysis technique based on XAI (eXplainable Artificial Intelligence). As a result of testing a classification model that detects DGA (Domain Generation Algorithm), anomaly scores were extracted through the SHAP(Shapley Additive exPlanations) Value of the data after distribution, and as a result, it was confirmed that efficient drift point detection was possible.

An Accelerated Approach to Dose Distribution Calculation in Inverse Treatment Planning for Brachytherapy (근접 치료에서 역방향 치료 계획의 선량분포 계산 가속화 방법)

  • Byungdu Jo
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.5
    • /
    • pp.633-640
    • /
    • 2023
  • With the recent development of static and dynamic modulated brachytherapy methods in brachytherapy, which use radiation shielding to modulate the dose distribution to deliver the dose, the amount of parameters and data required for dose calculation in inverse treatment planning and treatment plan optimization algorithms suitable for new directional beam intensity modulated brachytherapy is increasing. Although intensity-modulated brachytherapy enables accurate dose delivery of radiation, the increased amount of parameters and data increases the elapsed time required for dose calculation. In this study, a GPU-based CUDA-accelerated dose calculation algorithm was constructed to reduce the increase in dose calculation elapsed time. The acceleration of the calculation process was achieved by parallelizing the calculation of the system matrix of the volume of interest and the dose calculation. The developed algorithms were all performed in the same computing environment with an Intel (3.7 GHz, 6-core) CPU and a single NVIDIA GTX 1080ti graphics card, and the dose calculation time was evaluated by measuring only the dose calculation time, excluding the additional time required for loading data from disk and preprocessing operations. The results showed that the accelerated algorithm reduced the dose calculation time by about 30 times compared to the CPU-only calculation. The accelerated dose calculation algorithm can be expected to speed up treatment planning when new treatment plans need to be created to account for daily variations in applicator movement, such as in adaptive radiotherapy, or when dose calculation needs to account for changing parameters, such as in dynamically modulated brachytherapy.

Proposal of Standardization Plan for Defense Unstructured Datasets based on Unstructured Dataset Standard Format (비정형 데이터셋 표준포맷 기반 국방 비정형 데이터셋 표준화 방안 제안)

  • Yun-Young Hwang;Jiseong Son
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.189-198
    • /
    • 2024
  • AI is accepted not only in the private sector but also in the defense sector as a cutting-edge technology that must be introduced for the development of national defense. In particular, artificial intelligence has been selected as a key task in defense science and technology innovation, and the importance of data is increasing. As the national defense department shifts from a closed data policy to data sharing and activation, efforts are being made to secure high-quality data necessary for the development of national defense. In particular, we are promoting a review of the business budget system to secure data so that related procedures can be improved to reflect the unique characteristics of AI and big data, and research and development can begin with sufficient large quantities and high-quality data. However, there is a need to establish standardization and quality standards for structured data and unstructured data at the national defense level, but the defense department is still proposing standardization and quality standards for structured data, so this needs to be supplemented. In this paper, we propose an unstructured data set standard format for defense unstructured data sets, which are most needed in defense artificial intelligence, and based on this, we propose a standardization method for defense unstructured data sets.

A Study on Machine Learning-Based Real-Time Gesture Classification Using EMG Data (EMG 데이터를 이용한 머신러닝 기반 실시간 제스처 분류 연구)

  • Ha-Je Park;Hee-Young Yang;So-Jin Choi;Dae-Yeon Kim;Choon-Sung Nam
    • Journal of Internet Computing and Services
    • /
    • v.25 no.2
    • /
    • pp.57-67
    • /
    • 2024
  • This paper explores the potential of electromyography (EMG) as a means of gesture recognition for user input in gesture-based interaction. EMG utilizes small electrodes within muscles to detect and interpret user movements, presenting a viable input method. To classify user gestures based on EMG data, machine learning techniques are employed, necessitating the preprocessing of raw EMG data to extract relevant features. EMG characteristics can be expressed through formulas such as Integrated EMG (IEMG), Mean Absolute Value (MAV), Simple Square Integral (SSI), Variance (VAR), and Root Mean Square (RMS). Additionally, determining the suitable time for gesture classification is crucial, considering the perceptual, cognitive, and response times required for user input. To address this, segment sizes ranging from a minimum of 100ms to a maximum of 1,000ms are varied, and feature extraction is performed to identify the optimal segment size for gesture classification. Notably, data learning employs overlapped segmentation to reduce the interval between data points, thereby increasing the quantity of training data. Using this approach, the paper employs four machine learning models (KNN, SVC, RF, XGBoost) to train and evaluate the system, achieving accuracy rates exceeding 96% for all models in real-time gesture input scenarios with a maximum segment size of 200ms.

Evaluation of Applicability for 3D Scanning of Abandoned or Flooded Mine Sites Using Unmanned Mobility (무인 이동체를 이용한 폐광산 갱도 및 수몰 갱도의 3차원 형상화 위한 적용성 평가)

  • Soolo Kim;Gwan-in Bak;Sang-Wook Kim;Seung-han Baek
    • Tunnel and Underground Space
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • An image-reconstruction technology, involving the deployment of an unmanned mobility equipped with high-speed LiDAR (Light Detection And Ranging) has been proposed to reconstruct the shape of abandoned mine. Unmanned mobility operation is remarkably useful in abandoned mines fraught with operational difficulties including, but not limited to, obstacles, sludge, underwater and narrow tunnel with the diameter of 1.5 m or more. For cases of real abandoned mines, quadruped robots, quadcopter drones and underwater drones are respectively deployed on land, air, and water-filled sites. In addition to the advantage of scanning the abandoned mines with 2D solid-state lidar sensors, rotation of radiation at an inclination angle offers an increased efficiency for simultaneous reconstruction of mineshaft shapes and detecting obstacles. Sensor and robot posture were used for computing rotation matrices that helped compute geographical coordinates of the solid-state lidar data. Next, the quadruped robot scanned the actual site to reconstruct tunnel shape. Lastly, the optimal elements necessary to increase utility in actual fields were found and proposed.

A Study on the Implementation of a Model for Mission Impact Assessment due to Cyber Attacks (사이버공격에 의한 임무피해 평가를 위한 모델 구현에 관한 연구)

  • Yonghyun Kim;Donghwa Kim;Donghwan Lee;Juyoub Kim;Miyoung Kwon;Myung Kil Ahn
    • Journal of Internet Computing and Services
    • /
    • v.25 no.5
    • /
    • pp.1-11
    • /
    • 2024
  • Cyber Attacks on physical asset impacts the missions the asset performs. To determine how the resources of an asset are affected by various cyber attacks and to assess the impact on mission performance due to the asset's condition, modeling & simulation technology can be utilized. Many studies on mission impact analysis due to cyber warfare have been conducted, primarily in the United States. Existing research provides frameworks and methodologies to capture how and to what extent cyber attacks impact critical missions. However, it lacks specificity in the construction of models representing the mission and cyber environment, as well as in the relationships between these models. To overcome these limitations, it is necessary to develop simulation logic and modeling for cyber attacks and mission models. In addition, it is necessary to classify from assets to mission systems by hierarchy, define the connections between the hierarchies, and develop the propagation of damage across these hierarchies. This paper proposes a simulation method for a model that can evaluate mission system damage caused by cyber attacks using inter-hierarchical dependencies, and presents a method for implementing a model for mission impact assessment due to cyber warfare. The model implemented according to the proposed method is also presented. The model proposed in this paper was tested on three types of mission systems as a pilot study. It is expected to quantitatively analyze mission damage assessments due to cyber attacks on various military mission systems in the future.

Exploring Data Augmentation Ratios for YOLO-Based Multi-Category Clothing Image Classification by Model Size (모델 크기별 데이터 증강 비율 탐구를 통한 YOLO 기반 의류 이미지 다중 카테고리 분류 연구)

  • Seyeon Park;Sunga Hwang;Beakcheol Jang
    • Journal of Internet Computing and Services
    • /
    • v.25 no.5
    • /
    • pp.95-105
    • /
    • 2024
  • With the recent adoption of AI by various clothing shopping platforms and related industries to meet consumer needs and enhance purchasing power, the necessity for accurate classification of clothing categories and colors has surged. This paper aims to address this issue by developing a deep learning model that classifies various clothing items and their colors within a single image using buyer review images. After directly crawling buyer review image data and performing various preprocessing steps such as data augmentation, we utilized the YOLOv10 model to detect clothing objects and classify them into categories. Subsequently, to improve color extraction, we implemented a cropping method to isolate clothing regions in the images and calculated the similarity with a color chart to extract the most similar color names. Our experimental results show that our approach is effective, with performance increasing with model size and augmentation scale. The employed model showed stable performance in both clothing category and color extraction, proving its reliability. The proposed system not only enhances customer satisfaction and purchasing power by accurately classifying clothing categories and colors based on user review images but also lays the foundation for further research in automated fashion analysis. Moreover, it possesses the scalability to be utilized in various fields of the related industry, such as fashion trend analysis, inventory management, and marketing strategy development.

Analyzing Contextual Polarity of Unstructured Data for Measuring Subjective Well-Being (주관적 웰빙 상태 측정을 위한 비정형 데이터의 상황기반 긍부정성 분석 방법)

  • Choi, Sukjae;Song, Yeongeun;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.83-105
    • /
    • 2016
  • Measuring an individual's subjective wellbeing in an accurate, unobtrusive, and cost-effective manner is a core success factor of the wellbeing support system, which is a type of medical IT service. However, measurements with a self-report questionnaire and wearable sensors are cost-intensive and obtrusive when the wellbeing support system should be running in real-time, despite being very accurate. Recently, reasoning the state of subjective wellbeing with conventional sentiment analysis and unstructured data has been proposed as an alternative to resolve the drawbacks of the self-report questionnaire and wearable sensors. However, this approach does not consider contextual polarity, which results in lower measurement accuracy. Moreover, there is no sentimental word net or ontology for the subjective wellbeing area. Hence, this paper proposes a method to extract keywords and their contextual polarity representing the subjective wellbeing state from the unstructured text in online websites in order to improve the reasoning accuracy of the sentiment analysis. The proposed method is as follows. First, a set of general sentimental words is proposed. SentiWordNet was adopted; this is the most widely used dictionary and contains about 100,000 words such as nouns, verbs, adjectives, and adverbs with polarities from -1.0 (extremely negative) to 1.0 (extremely positive). Second, corpora on subjective wellbeing (SWB corpora) were obtained by crawling online text. A survey was conducted to prepare a learning dataset that includes an individual's opinion and the level of self-report wellness, such as stress and depression. The participants were asked to respond with their feelings about online news on two topics. Next, three data sources were extracted from the SWB corpora: demographic information, psychographic information, and the structural characteristics of the text (e.g., the number of words used in the text, simple statistics on the special characters used). These were considered to adjust the level of a specific SWB. Finally, a set of reasoning rules was generated for each wellbeing factor to estimate the SWB of an individual based on the text written by the individual. The experimental results suggested that using contextual polarity for each SWB factor (e.g., stress, depression) significantly improved the estimation accuracy compared to conventional sentiment analysis methods incorporating SentiWordNet. Even though literature is available on Korean sentiment analysis, such studies only used only a limited set of sentimental words. Due to the small number of words, many sentences are overlooked and ignored when estimating the level of sentiment. However, the proposed method can identify multiple sentiment-neutral words as sentiment words in the context of a specific SWB factor. The results also suggest that a specific type of senti-word dictionary containing contextual polarity needs to be constructed along with a dictionary based on common sense such as SenticNet. These efforts will enrich and enlarge the application area of sentic computing. The study is helpful to practitioners and managers of wellness services in that a couple of characteristics of unstructured text have been identified for improving SWB. Consistent with the literature, the results showed that the gender and age affect the SWB state when the individual is exposed to an identical queue from the online text. In addition, the length of the textual response and usage pattern of special characters were found to indicate the individual's SWB. These imply that better SWB measurement should involve collecting the textual structure and the individual's demographic conditions. In the future, the proposed method should be improved by automated identification of the contextual polarity in order to enlarge the vocabulary in a cost-effective manner.

An Exploratory study on the Direction of Home Economics Education associated with the future social change: focusing on the new recognition of the characteristic as the Subjects for Life and Happiness (미래 사회의 변화와 가정과교육의 방향 탐색 - '삶 중심 교과'와 '행복 교과'로서의 성격 재인식을 중심으로 -)

  • Wang, Seok-Soon
    • Journal of Korean Home Economics Education Association
    • /
    • v.28 no.3
    • /
    • pp.17-32
    • /
    • 2016
  • This exploratory study which applied environmental scanning method to analyse a change in a future society tried to diagnose a reaction ability of our education system for the change in the future society. In addition, the study tried to explore an adequate direction for Home Economics Subject to be an mandatory subject continuously toward the change in the future society. Main changes in the future society can be expected as 1) demographic change due to low birth rate and aging society, 2) an increasing threat of a human living environment due to unexpectable natural disasters and accidents, 3) a radical progress into a ubiquitous computing environment led by AI, 4) an advent of a borderless economic society and a change for jobs, 5) a change in North Korea, and so on. Our education system which mostly concentrates on education to develop constructive intelligence by halving the society and schooling as yet, however, is diagnosed as it has a paradox that can not understand an emotional competency as a target for studying. Home Economics Subject is worth as the subject that can exactly complement a blind spot of our education system which can not respond to the future society adequately. This is because Home Economics Subject has had a characteristic as a 'Subject of Life' traditionally that has dealt with an overall 'life' of human beings, and the characteristic is favorable to develop human practical intelligence. Thus, because the 'life' is the main point of Home Economics Subject, it has the characteristic as a 'Subject of Happiness' which is the most effective method to develop a tendency to appreciate, a sense of empathy, and lots of pro-social behaviors that are important capacities to seek for happiness. As Alderfer's ERG Theory is to understand human beings' behavior based on the satisfactory of human beings' hierarchical desires, it is suggested as an adequate frame for the theory to restructure the characteristic of Home Economics Subject which develops the 'capacity to seek for happiness' by focusing the 'life', into core concept and core capacity of curriculum. A follow-up study should make a connection between ERG Theory and core concept and core capacity of curriculum to explore how the theory can be reflected on Home Economics curriculum.

A Study on Regulation of Video on Demand Advertisements (주문형서비스(Video on Demand) 광고 규제에 관한 연구)

  • Cho, Dae-keun;Kim, Ki-youn
    • Journal of Internet Computing and Services
    • /
    • v.17 no.4
    • /
    • pp.145-159
    • /
    • 2016
  • This study points out the problems of absence of the legislation for standard regulation on Video on Demand(VoD) advertisement which grows so fast lately, for this it recommends making legal references, which have the definition of non-linear broadcasting & VoD advertisement and VoD advertisement standard regulation in the merged Broadcasting Act, and adopting co-regulation system. Pay TV operators providing VoD service have the opportunities to make money as subscribers uses it increasingly. In case of linear service, the Broadcasting Act regulates the advertisement strictly, but not the VoD ads. The reason why is that Korean legislation including the Broadcasting Act does not have legal reference to regulate it, instead of that, it rely on the self-regulation system which is operated by pay-tv players who provide the VoD ads. So, there is the limitation to protect the minors such as children and youth from the harmful VoD ads, to be invulnerable for advertisers to influence to advertising agents, and to ensure the regulatory effectiveness under player-centric self-regulatory regime. In this context, this study analyses the how to regulate VoD ads standard with a three-pronged approach. First, it analyses the VoD ads regulation system in overseas countries, UK, Canada, EU and Ireland. Each country has the legal reference to regulate it in the Broadcasting Act or lower statures and adopts the co-regulatory regime the NRA and the 3rd entity operate together. Second, it reviews the objectives and scope of VoD ads standard. This study recommends that the objective of it is users protection and the scope of it is standard regulation not commercial practice. Third, this study researches how to legislate for regulation of VoD ads standard. Considering VoD service's characteristics(non-linear service) and legal position of Ads agency(i.e. pay tv operators), it suggest that legal reference will be in the integrated Broadcasting bill, which is the general law, not individual. If it is available to regulate VoD ads standard with co-regulatory regime, it expects the enhancement of user protection from the harmful VoD ads and make up sustainability of the pay-tv players' self-regulation.