• Title/Summary/Keyword: Computerized tomography

Search Result 338, Processing Time 0.028 seconds

Accuracy of Pedicle Screw Insertion Using Fluoroscopy-Based Navigation-Assisted Surgery : Computed Tomography Postoperative Assessment in 96 Consecutive Patients

  • Lee, Keong Duk;Lyo, In Uk;Kang, Byeong Seong;Sim, Hong Bo;Kwon, Soon Chan;Park, Eun Suk
    • Journal of Korean Neurosurgical Society
    • /
    • v.56 no.1
    • /
    • pp.16-20
    • /
    • 2014
  • Objective : Two-dimensional fluoroscopy-based computerized navigation for the placement of pedicle screws offers the advantage of using stored patient-specific imaging data in providing real-time guidance during screw placement. The study aimed to describe the accuracy and reliability of a fluoroscopy-based navigation system for pedicle screw insertion. Methods : A total of 477 pedicle screws were inserted in the lower back of 96 consecutive patients between October 2007 and June 2012 using fluoroscopy-based computer-assisted surgery. The accuracy of screw placement was evaluated using a sophisticated computed tomography protocol. Results : Of the 477 pedicle screws, 461 (96.7%) were judged to be inserted correctly. Frank screw misplacement [16 screws (3.3%)] was observed in 15 patients. Of these, 8 were classified as minimally misplaced (${\leq}2mm$); 3, as moderately misplaced (2.1-4 mm); and 5, as severely misplaced (>4 mm). No complications, including nerve root injury, cerebrospinal fluid leakage, or internal organ injury, were observed in any of the patients. Conclusion : The accuracy of pedicle screw placement using a fluoroscopy-based computer navigation system was observed to be superior to that obtained with conventional techniques.

Nuclear Medicine Physics: Review of Advanced Technology

  • Oh, Jungsu S.
    • Progress in Medical Physics
    • /
    • v.31 no.3
    • /
    • pp.81-98
    • /
    • 2020
  • This review aims to provide a brief, comprehensive overview of advanced technologies of nuclear medicine physics, with a focus on recent developments from both hardware and software perspectives. Developments in image acquisition/reconstruction, especially the time-of-flight and point spread function, have potential advantages in the image signal-to-noise ratio and spatial resolution. Modern detector materials and devices (including lutetium oxyorthosilicate, cadmium zinc tellurium, and silicon photomultiplier) as well as modern nuclear medicine imaging systems (including positron emission tomography [PET]/computerized tomography [CT], whole-body PET, PET/magnetic resonance [MR], and digital PET) enable not only high-quality digital image acquisition, but also subsequent image processing, including image reconstruction and post-reconstruction methods. Moreover, theranostics in nuclear medicine extend the usefulness of nuclear medicine physics far more than quantitative image-based diagnosis, playing a key role in personalized/precision medicine by raising the importance of internal radiation dosimetry in nuclear medicine. Now that deep-learning-based image processing can be incorporated in nuclear medicine image acquisition/processing, the aforementioned fields of nuclear medicine physics face the new era of Industry 4.0. Ongoing technological developments in nuclear medicine physics are leading to enhanced image quality and decreased radiation exposure as well as quantitative and personalized healthcare.

Evaluation of Skin Dose and Image Quality on Cone Beam Computed Tomography (콘빔CT 촬영 시 mAs의 변화에 따른 피부선량과 영상 품질에 관한 평가)

  • Ahn, Jong-Ho;Hong, Chae-Seon;Kim, Jin-Man;Jang, Jun-Young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.20 no.1
    • /
    • pp.17-23
    • /
    • 2008
  • Purpose: Cone-beam CT using linear accelerator attached to on-board imager is a image guided therapy equipment. Because it is to check the patient's set-up error, correction, organ and target movement. but imaging dose should be cause of the secondary cancer when taking a image. The aim of this study is investigation of appropriate cone beam CT scan mode to compare and estimate the image quality and skin dose. Materials and Methods: Measurement by Thermoluminescence dosimeter (TLD-100, Harshaw) with using the Rando phantom are placed on each eight sites in seperately H&N, thoracic, abdominal section. each 4 methods of scan modes of are measured the for skin dose in three time. Subsequently, obtained average value. Following image quality QA protocol of equipment manufacturers using the catphan 504 phantom, image quality of each scan mode is compared and analyzed. Results: The results of the measured skin dose are described in here. The skin dose of Head & Neck are measured mode A: 8.96 cGy, mode B: 4.59 cGy, mode C: 3.46 cGy mode D: 1.76 cGy and thoracic mode A: 9.42 cGy, mode B: 4.58 cGy, mode C: 3.65 cGy, mode D: 1.85 cGy, and abdominal mode A: 9.97 cGy, mode B: 5.12 cGy, mode C: 4.03 cGy, mode D: 2.21 cGy. Approximately, dose of mode B are reduced 50%, mode C are reduced 60%, mode D are reduced 80% a point of reference dose of mode A. the results of analyzed HU reproducibility, low contrast resolution, spatial resolution (high contrast resolution), HU uniformity in evaluation item of image quality are within the tolerance value by recommended equipment manufacturer in all scan mode. Conclusion: Maintaining the image quality as well as reducing the image dose are very important in cone beam CT. In the result of this study, we are considered when to take mode A when interested in soft tissue. And we are considered to take mode D when interested in bone scan and we are considered to take mode B, C when standard scan. Increasing secondary cancer risk due to cone beam CT scan should be reduced by low mAs technique.

  • PDF

Finite Element Analysis of Wrist Orthosis with 3D Printing (3D 프린트를 통해 제작된 손목 보조기의 유한요소해석)

  • Choi, Hyeun-Woo;Kang, Inyeong;Noh, Gunwoo;Seo, Anna;Lee, Jong-Min
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.947-953
    • /
    • 2019
  • The purpose of this study was to manufacture a wrist brace using a computerized tomography system, clinical design software (MediACE 3D Program), and 3D printer. After acquiring the Dicom file of the upper limb with a computed tomography, the wrist brace was designed using the MediACE 3D Program to create a "stereolithography" file. The designed wrist brace was printed using a 3D printer. To verify the effectiveness of wrist assistive device manufactured by 3D printing technology, the stress distribution of the pressure and orthosis applied to bone and skin is represented by finite element analysis. It is expected that the wrist brace can be manufactured by reinforcing the part where the damage caused by pressure and breakage of the brace frequently occurs with the result of finite element analysis when producing the wrist brace.

ASSESSMENT OF BONE DENSITY ON MAXILLA AFTER IMPLANTATION WITH CONE BEAM COMPUTED TOMOGRAPHY (Cone Beam Computed Tomography를 이용한 상악 임플란트 식립 전후의 골밀도 변화에 관한 연구)

  • Choi, Jeong-Hun;Lee, Ju-Min;Kim, Yong-Deok;Shin, Sang-Hun;Chung, In-Kyo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.3
    • /
    • pp.229-235
    • /
    • 2010
  • Purpose: This study examined the significance of increased bone density according to time after implantation on maxilla using demographic data with CBCT and compared the bone density between before vs. after implantation using the Hounsfield index. Materials and Methods: Twenty-five implant site on maxilla were selected. Cone-beam computerized tomography (CBCT) scans were used for the analysis. The implant sites were evaluated digitally using the Hounsfield scale with EzImplant TM and the results were compared over time. Statistical data over time was carried out to determine the correlation between the recorded Hounsfield unit (HU) over time and gender difference using repeated ANOVA. Results: The bone density of implantation site over time showed an increase in the HU mean values. Immediately after implantation, bone density was significantly increased than bone density before implantation. Until 6 month follow-up, bone density showed stable increasement. There is no significant difference on gender. Conclusions: Using CBCT, bone density increased over time after implantation on maxilla. Bone density measurements using CBCT might provide an objective assessment of the bone quality as well as the correlation between bone density and stability of implant.

Incomplete bone formation after sinus augmentation: A case report on radiological findings by computerized tomography at follow-up

  • Lee, Kyung-Shil;Kwon, Young-Hyuk;Herr, Yeek;Shin, Seung-Il;Lee, Ji-Yeon;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.6
    • /
    • pp.283-288
    • /
    • 2010
  • Purpose: The aim of this case report is to present a case of incomplete bone formation after sinus augmentation. Methods: A patient having alveolar bone resorption of the maxillary posterior edentulous region and advanced pneumatization of the maxillary sinus was treated with sinus elevation using deproteinized bovine bone in the Department of Periodontology, Kyung Hee University School of Dentistry and re-evaluated with computed tomography (CT) follow-up. Results: Even though there were no significant findings or abnormal radiolucency on the panoramic radiograph, incomplete bone formation in the central portion of the augmented sinus was found fortuitously in the CT scan. The CT scan revealed peri-implant radiolucency in the apical portion of the implant placed in the augmented maxillary sinus. Nevertheless, the dental implants placed in the grafted sinus still functioned well at over 15 months follow-up. Conclusions: The result of this case suggests that patients who received maxillary sinus augmentation may experience incomplete bone formation. It is possible that 1) osteoconductive graft material with poor osteogenic potential, 2) overpacking of graft material that restricts the blood supply, and 3) bone microbial contamination may cause the appearance of incomplete bone formation after sinus augmentation. Further studies are needed to elucidate the mechanism of this unexpected result and care must be taken to prevent it.

A STUDY ON THE ROOT CANAL MORPHOLOGY CHANGE BY NICKEL-TITANIUM AND STAINLESS STEEL FILE INSTRUMENTATION USING COMPUTERIZED TOMOGRAPHY (Nickel-Titanium file과 Stainless steel file을 이용한 근관형성시 컴퓨터 단층촬영사진상의 근관형태 변화에 관한 연구)

  • So, Mun-Seop;Im, Mi-Kyung;Lee, Keon-Il;Lee, Yong-Keun;Lee, Su-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.2
    • /
    • pp.659-669
    • /
    • 1997
  • The goals of root canal instrumentation are complete debridement of pulp tissue, removal of microbes and affected dentin, and proper cleaning and shaping of the root canal space before obturation. Instrumentation with stainless steel files has been shown to produce undesirable results in canals, regardless of the improved technique or modified file type used. Nickel-Titanium(Ni-Ti) alloy has been shown to be exceptionally elastic, having a lower bending moment and lower permanent set after torsion, compared with similar gauge stainless steel. The purpose of this study was to evaluate the change of root canal prepared by Ni-Ti rotary and stainless steel instruments. Thirty-four single rooted teeth of similar shape and canal size were divided into three groups. The teeth were scanned by computed tomography before instrumentation. In group 1, canals were instrumented using a step-back technique with K-file. In group 2, canals were prepared with K-flex file using the same technique as group 1. Group 3 was prepared with nickel-titanium(Ni-Ti) rotary instrument using a manufacture's instruction. Instrumented teeth were again scanned using computed tomography, and reformated images of the uninstrumented canals were compared with images of the instrumented canals. K-flex file and Ni-Ti file caused significantly less canal transportation than K-file in the 8mm root canal section from the apex(p<0.05). K-flex file and Ni-Ti file produced more centered canal preparation than K-file in the 2mm section(p<0.05). Ni-Ti file maintained more precisely the center of the canal than K-flex file in the 10mm section (p<0.05). There was no difference in the removed volume of canals among each groups.

  • PDF

Medical Image Registration Methods for Intra-Cavity Surgical Robots (인체 공동 내부 수술용 로봇을 위한 이미지 레지스트레이션 방법)

  • An, Jae-Bum;Lee, Sang-Yoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.9
    • /
    • pp.140-147
    • /
    • 2007
  • As the use of robots in surgeries becomes more frequent, the registration of medical devices based on images becomes more important. This paper presents two numerical algorithms for the registration of cross-sectional medical images such as CT (Computerized Tomography) or MRI (Magnetic Resonance Imaging) by using the geometrical information from helix or line fiducials. Both registration algorithms are designed to be used for a surgical robot that works inside a cavity of human body. This paper also reports details about the fiducial pattern that includes four helices and one line. The algorithms and the fiducial pattern were tested in various computer-simulated situations, and the results showed excellent overall registration accuracy.

3-D Inverse Radon Transform by Use of Tree-Structured Filter Bank

  • Morikawa, Yoshitaka;Murakami, Junichi
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.184-187
    • /
    • 2002
  • Two-dimensional (2-D) X-ray computerized tomography (CT) equipments are widely used in industrial and medical fields, and nowadays studies on reconstruction algorithm for 3-D cone-beam acquisition systems are active for better utilization. The authors recent-By have proposed a fast reconstruction aigorithm using tree-structured filter bank for 2-D C1, and shown the algorithm is applicable to an approximate reconstruction of 3-D CT. For exact 3-D CT reconstruction, however, we have to backproject 1-D signal into 3-D space. This paper proposes a fast implementation method for this back-projection by use of tree-structured filter bank. and shows the proposed method works approximately 700 times faster than the direct one with almost same reconstruction image quality.

  • PDF

Construction of 3D Geometric Surface Model from Laminated CT Images for the Pubis (치골 부위의 CT 적층 영상을 활용한 3D 기하학적 곡면 모델로의 가공)

  • Hwang, Ho-Jin;Mun, Du-Hwan;Hwang, Jin-Sang
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.3
    • /
    • pp.234-242
    • /
    • 2010
  • 3D CAD technology has been extended to a medical area including dental clinic beyond industrial design. The 2D images obtained by CT(Computerized Tomography) and MRI(Magnetic Resonance Imaging) are not intuitive, and thus the volume rendering technique, which transforms 2D data into 3D anatomic information, has been in practical use. This paper has focused on a method and its implementation for forming 3D geometric surface model from laminated CT images of the pubis. The implemented system could support a dental clinic to observe and examine the status of a patient's pubis before implant surgery. The supplement of 3D implant model would help dental surgeons settle operation plans more safely and confidently. It also would be utilized with teaching materials for a practice and training.