• 제목/요약/키워드: Computer-aided detection

검색결과 114건 처리시간 0.026초

Fatty Liver 환자의 컴퓨터단층촬영 영상을 이용한 질감특징분석 (Texture Feature analysis using Computed Tomography Imaging in Fatty Liver Disease Patients)

  • 박형후;박지군;최일홍;강상식;노시철;정봉재
    • 한국방사선학회논문지
    • /
    • 제10권2호
    • /
    • pp.81-87
    • /
    • 2016
  • 본 실험에서 제안된 질감특징분석 알고리즘은 지방간 환자의 CT영상을 이용하여 정상영상과 질환영상으로 구분하여, 정상 간 CT영상과 지방간 CT영상을 생성하고 제안된 질감특징분석을 이용한 컴퓨터보조 진단 시스템에 적용하여 6개의 파라메타로 정량적 분석을 통해 지방간 CT영상의 질환 인식률을 도출하고 평가하였다. 결과로 지방간 CT영상 30증례 중에서 각각의 파라메타별 질감특징 값에 대한 인식률은 평균 밝기의 경우 100%, 엔트로피의 경우 96.67%, 왜곡도의 경우 93.33%로 높게 나타났고, 평탄도의 경우 83.33%, 균일도의 경우 86.67%, 평균대조도의 경우 80%로 다소 낮은 질환 인식률을 보였다. 따라서 본 연구의 결과를 바탕으로 의료영상의 컴퓨터보조진단 시스템으로 발전된 프로그램을 구현한다면 지방간 CT영상의 질환부위 자동검출 및 정량적 진단이 가능해 컴퓨터보조진단 자료로서 활용이 가능할 것으로 판단되며 최종판독에서 객관성, 정확성, 판독시간 단축에 유용하게 사용 될 것으로 사료된다.

Comparison of Segmentation based on Threshold and KCMeans Method

  • R.Spurgen Ratheash;M.Mohmed Sathik
    • International Journal of Computer Science & Network Security
    • /
    • 제24권9호
    • /
    • pp.93-96
    • /
    • 2024
  • The segmentation, detection, and extraction of infected tumour area from magnetic resonance (MR) images are a primary concern but a tedious and time taking task performed by radiologists or clinical experts, and their accuracy depends on their experience only. So, the use of computer aided technology becomes very necessary to overcome these limitations. In this study, to improve the performance and reduce the complexity involves in the medical image segmentation process, we have investigated many algorithm methods are available in medical imaging amongst them the Threshold technique brain tumour segmentation process gives an accurate result than other methods for MR images. The proposed method compare with the K-means clustering methods, it gives a cluster of images. The experimental results of proposed technique have been evaluated and validated for performance and quality analysis on magnetic resonance brain images, based on accuracy, process time and similarity of the segmented part. The experimental results achieved more accuracy, less running time and high resolution.

어려운 고속도로 환경에서 Lidar를 이용한 안정적이고 정확한 다중 차선 인식 알고리즘 (Stable and Precise Multi-Lane Detection Algorithm Using Lidar in Challenging Highway Scenario)

  • 이한슬;서승우
    • 전자공학회논문지
    • /
    • 제52권12호
    • /
    • pp.158-164
    • /
    • 2015
  • 차선인식은 차선 유지, 경로 계획 등을 가능하게 하는 기술로서 자율주행차를 구성하는 가장 중요한 요소 중 하나이다. 카메라 센서를 이용한 연구가 많이 진행되었으나 센서의 특성상 화각의 한계가 존재하며 조도 환경에 취약한 단점이 있다. 반면 Lidar 센서는 넓은 화각과 함께 표면의 반사율 정보를 이용하기에 조도의 영향을 받지 않는 장점이 있다. 기존 연구에선 Hough 변환, 히스토그램 등의 방법을 이용하였는데 도로 표시들이 혼재한 상황에서 올바른 차선 인식이 이루어지지 않거나 다수의 차선이 존재함에도 주행 차선만 인식 되는 문제점들이 존재한다. 본 논문에서는 RANSAC과 regularization을 적용해 도로 표시가 혼재된 고속도로 환경에서도 정확하고 안정적인 다중 차선 인식 알고리즘을 제안한다. 정확한 차선 후보군 추출을 위해 원 모델 RANSAC을 적용하였고 안정적인 다중 차선 검출을 위해 피팅에 regularization을 추가로 제안하였다. 직접 취득한 도로 주행 데이터에 적용하여 높은 정확도와 실시간성을 정량적으로 검증하였다.

CAD for Detection of Brain Tumor Using the Symmetry Contribution From MR Image Applying Unsharp Mask Filter

  • Kim, Dong-Hyun;Ye, Soo-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권4호
    • /
    • pp.230-234
    • /
    • 2014
  • Automatic detection of disease helps medical institutions that are introducing digital images to read images rapidly and accurately, and is thus applicable to lesion diagnosis and treatment. The aim of this study was to apply a symmetry contribution algorithm to unsharp mask filter-applied MR images and propose an analysis technique to automatically recognize brain tumor and edema. We extracted the skull region and drawed outline of the skull in database of images obtained at P University Hospital and detected an axis of symmetry with cerebral characteristics. A symmetry contribution algorithm was then applied to the images around the axis of symmetry to observe intensity changes in pixels and detect disease areas. When we did not use the unsharp mask filter, a brain tumor was detected in 60 of a total of 95 MR images. The disease detection rate for the brain was 63.16%. However, when we used the unsharp mask filter, the tumor was detected in 87 of a total of 95 MR images, with a disease detection rate of 91.58%. When the unsharp mask filter was used in the pre-process stage, the disease detection rate for the brain was higher than when it was not used. We confirmed that unsharp mask filter can be used to rapidly and accurately to read many MR images stored in a database.

컴퓨터단층영상에서 TIA를 이용한 간경화의 컴퓨터보조진단 (Computer-Aided Diagnosis for Liver Cirrhosis using Texture features Information Analysis in Computed Tomography)

  • 김창수;고성진;강세식;김정훈;김동현;최석윤
    • 한국콘텐츠학회논문지
    • /
    • 제12권4호
    • /
    • pp.358-366
    • /
    • 2012
  • 간경화(liver cirrhosis)는 섬유조직의 증식과 재생성 결절 형성의 형태학적인 변화로 2차적으로 간내혈관의 변형 및 간기능의 저하가 나타나는 질병이며, 정맥류, 복수와 부종, 간성뇌증, 간암 등의 합병증 동반을 미연에 방지하는 것이 간경변증 진단 및 치료에 핵심이다. 일반적으로 간 컴퓨터단층영상이 간경변의 진단 및 병기를 결정하는 방법으로 사용한다. 그러므로 본 연구에서는 간경화의 자동 인식을 위하여 PCA와 TIA 알고리즘을 이용한 특징추출을 통하여 간경변의 자동 검출능력을 알아보고, 각 알고리즘간의 성능을 비교하였다. 실험은 학습영상과 테스트영상으로 구분한다. 고유영상을 생성시키기 위한 학습영상으로 정상영상이 사용되고, 테스트영상으로는 간경화영상이 사용된다. 간 CT 영상에서 간의 질병 부위를 균등하게 ROI 설정하고, $50{\times}50$ 픽셀 크기로 영상을 저장하여 실험하였다. 실험결과로 PCA는 간경화 검출율이 35%로 질병 인식으로 부적합하며, TIA 알고리즘의 AGL, TM, MU, EN는 100% 질병 인식력을 나타내어 간경화 자동 진단 인식으로 가능했다. 또한 결과를 임상에 적용하여 간경변의 컴퓨터보조진단으로 활용한다면 영상의학과 의사에게 업무 부담을 줄이고, 일차적 간경변의 스크리닝 도구로서 활용이 가능할 것이다. 그리고 TIA 알고리즘을 활용한 자동진단은 질병 진단의 전단계로서 예비판독의 정보를 제공하며 간경변의 조기 진단 및 예방이 가능다고 판단된다.

An Efficient Collision Queries in Parallel Close Proximity Situations

  • Kim, Dae-Hyun;Choi, Han-Soo;Kim, Yeong-Dong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2402-2406
    • /
    • 2005
  • A collision query determines the intersection between given objects, and is used in computer-aided design and manufacturing, animation and simulation systems, and physically-based modeling. Bounding volume hierarchies are one of the simplest and most widely used data structures for performing collision detection on complex models. In this paper, we present hierarchy of oriented rounded bounding volume for fast proximity queries. Designing hierarchies of new bounding volumes, we use to combine multiple bounding volume types in a single hierarchy. The new bounding volume corresponds to geometric shape composed of a core primitive shape grown outward by some offset such as the Minkowski sum of rectangular box and a sphere shape. In the experiment of parallel close proximity, a number of benchmarks to measure the performance of the new bounding box and compare to that of other bounding volumes.

  • PDF

신경회로망을 이용한 흉부 X-선 간접촬영에서의 병변검출 (Detection of Abnormal Regions Neural-Network In Chest Photofluorography)

  • 이후민;윤광호;김상훈;남문현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2482-2484
    • /
    • 2000
  • In this paper, we have developed an automated computer aided diagnostic (CAD) scheme by using artificial neural networks(ANN) on guantitative analysis of chest photofluorography. The first ANN performs the detection of suspicious regions in a low resolution image. This was trained specifically on the problem of detecting abnormal regions digitized chest photofluorography. The second space matching method was used to distinguish between normal and abnormal regions of interest(ROI). If the ratio of the number of abnormal ROI to the total number of all ROI in a chest image was greater than a specified threshold level, the image was classified as abnormal.

  • PDF

한국형 디지털 마모그래피에서 SVM을 이용한 계층적 미세석회화 검출 방법 (A Hierarchical Microcalcification Detection Algorithm Using SVM in Korean Digital Mammography)

  • 권주원;강호경;노용만;김성민
    • 대한의용생체공학회:의공학회지
    • /
    • 제27권5호
    • /
    • pp.291-299
    • /
    • 2006
  • A Computer-Aided Diagnosis system has been examined to reduce the effort of radiologist. In this paper, we propose the algorithm using Support Vector Machine(SVM) classifier to discriminate whether microcalcifications are malignant or benign tumors. The proposed method to detect microcalcifications is composed of two detection steps each of which uses SVM classifier. The coarse detection step finds out pixels considered high contrasts comparing with neighboring pixels. Then, Region of Interest(ROI) is generated based on microcalcification characteristics. The fine detection step determines whether the found ROIs are microcalcifications or not by merging potential regions using obtained ROIs and SVM classifier. The proposed method is specified on Korean mammogram database. The experimental result of the proposed algorithm presents robustness in detecting microcalcifications than the previous method using Artificial Neural Network as classifier even when using small training data.

SINGLE ERROR CORRECTING CODE USING PBCA

  • Cho, Sung-Jin;Kim, Han-Doo;Pyo, Yong-Soo;Park, Yong-Bum;Hwang, Yoon-Hee;Choi, Un-Sook;Heo, Seong-Hun
    • Journal of applied mathematics & informatics
    • /
    • 제14권1_2호
    • /
    • pp.461-471
    • /
    • 2004
  • In recent years, large volumes of data are transferred between a computer system and various subsystems through digital logic circuits and interconnected wires. And there always exist potential errors when data are transferred due to electrical noise, device malfunction, or even timing errors. In general, parity checking circuits are usually employed for detection of single-bit errors. However, it is not sufficient to enhance system reliability and availability for efficient error detection. It is necessary to detect and further correct errors up to a certain level within the affordable cost. In this paper, we report a generation of 3-distance code using the characteristic matrix of a PBCA.

CT 영상에서 폐 결절 분할을 위한 경계 및 역 어텐션 기법 (Boundary and Reverse Attention Module for Lung Nodule Segmentation in CT Images)

  • 황경연;지예원;윤학영;이상준
    • 대한임베디드공학회논문지
    • /
    • 제17권5호
    • /
    • pp.265-272
    • /
    • 2022
  • As the risk of lung cancer has increased, early-stage detection and treatment of cancers have received a lot of attention. Among various medical imaging approaches, computer tomography (CT) has been widely utilized to examine the size and growth rate of lung nodules. However, the process of manual examination is a time-consuming task, and it causes physical and mental fatigue for medical professionals. Recently, many computer-aided diagnostic methods have been proposed to reduce the workload of medical professionals. In recent studies, encoder-decoder architectures have shown reliable performances in medical image segmentation, and it is adopted to predict lesion candidates. However, localizing nodules in lung CT images is a challenging problem due to the extremely small sizes and unstructured shapes of nodules. To solve these problems, we utilize atrous spatial pyramid pooling (ASPP) to minimize the loss of information for a general U-Net baseline model to extract rich representations from various receptive fields. Moreover, we propose mixed-up attention mechanism of reverse, boundary and convolutional block attention module (CBAM) to improve the accuracy of segmentation small scale of various shapes. The performance of the proposed model is compared with several previous attention mechanisms on the LIDC-IDRI dataset, and experimental results demonstrate that reverse, boundary, and CBAM (RB-CBAM) are effective in the segmentation of small nodules.