• Title/Summary/Keyword: Computer-aided Diagnosis

Search Result 162, Processing Time 0.025 seconds

Computer-Aided Vibration Signal Processing and Fault Monitoring System of Electrical-Fan Motors (컴퓨터를 이용한 선풍기모터의 진동신호처리 및 이상진단에 관한 연구)

  • Sin, Jung-Ho;Hwang, Gi-Hyeon;Choe, Yeong-Hyu;Park, Ju-Hyeok
    • 한국기계연구소 소보
    • /
    • s.17
    • /
    • pp.61-68
    • /
    • 1987
  • The main objective of this paper is to develop the computer-aided vibrational signal processing and monitoring system of rotating machinery. This system has an automatic data acquisition capability and analyze for machine fault diagnosis. By spectrum analysis, machine’s failure can be identified. The monitoring system enables diagnosis of the fault in rotating machinery. In this study, the conventional electrical fans are selected as a model case. The date processing and fault monitoring system proposed here can be applied to the automation of the inspection process in assembling motor-shaft systems. The automatic inspection can enhance the product quality and keep it stable. Since the proposed system is developed for personal computers, it might be cheap in cost and easy in installation.

  • PDF

A Study on Computer-Aided Diagnosis System for Interstitial Lung Disease in Chest Radiograph (흉부 영상에서 간질성 폐질환 검출을 위한 컴퓨터지원진단 시스템 연구)

  • 김진철;송종태;이우주;이배호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.316-318
    • /
    • 2003
  • 간질성 폐질환(Interstitial Lung Disease) 컴퓨터지원진단(Computer-Aided Diagnosis: CAD)시스템은 방사선의사들이 흉부 X-ray영상에서 석회화와 섬유화를 탐지하고자 적용하였다. 진단 중에 발생할 수 있는 오진율을 줄이고 간질성 폐질환이 존재하는 폐야에서 이상유무를 판단하여 검출을 표시하도록 하였다. 본 논문에서는 디지털 흉부영상에서의 간질성 폐질환을 검출하기 위해 폐 텍스처(texture)의 물리적 척도를 측정하기 위한 방법을 제안한다. 2차원의 푸리에 변환으로부터 얻어지는 파워스펙트럼(power spectrum) 분석에 기반을 두는 방법으로 각각의 ROI(Region Of Interest)에서 구한 평균제곱자승오차(Root Mean Sguare: RMS)와 파워스펙트럼의 첫 번갠 모멘트(Moment)는 폐 텍스처의 밀도변동의 크기(magnitude)와 섬세함(fineness)을 나타낸다. 실험결과 다양한 간질성폐질환을 가진 비정상 폐 텍스처의 RMS와 첫 번째 모멘트와는 차이가 있었다. 디지텔 흉부영상으로부터 계산되어진 정량화된 텍스처의 척도는 방사선의사의 간질성 폐 질환을 진단함에 효율적인 질환 탐지를 가능하게 하였으며 진단율을 향상시킬 수 있었다.

  • PDF

Deep Learning-Based Artificial Intelligence for Mammography

  • Jung Hyun Yoon;Eun-Kyung Kim
    • Korean Journal of Radiology
    • /
    • v.22 no.8
    • /
    • pp.1225-1239
    • /
    • 2021
  • During the past decade, researchers have investigated the use of computer-aided mammography interpretation. With the application of deep learning technology, artificial intelligence (AI)-based algorithms for mammography have shown promising results in the quantitative assessment of parenchymal density, detection and diagnosis of breast cancer, and prediction of breast cancer risk, enabling more precise patient management. AI-based algorithms may also enhance the efficiency of the interpretation workflow by reducing both the workload and interpretation time. However, more in-depth investigation is required to conclusively prove the effectiveness of AI-based algorithms. This review article discusses how AI algorithms can be applied to mammography interpretation as well as the current challenges in its implementation in real-world practice.

Statistical Techniques based Computer-aided Diagnosis (CAD) using Texture Feature Analysis: Applied of Cerebral Infarction in Computed Tomography (CT) Images

  • Lee, Jaeseung;Im, Inchul;Yu, Yunsik;Park, Hyonghu;Kwak, Byungjoon
    • Biomedical Science Letters
    • /
    • v.18 no.4
    • /
    • pp.399-405
    • /
    • 2012
  • The brain is the body's most organized and controlled organ, and it governs various psychological and mental functions. A brain abnormality could greatly affect one's physical and mental abilities, and consequently one's social life. Brain disorders can be broadly categorized into three main afflictions: stroke, brain tumor, and dementia. Among these, stroke is a common disease that occurs owing to a disorder in blood flow, and it is accompanied by a sudden loss of consciousness and motor paralysis. The main types of strokes are infarction and hemorrhage. The exact diagnosis and early treatment of an infarction are very important for the patient's prognosis and for the determination of the treatment direction. In this study, texture features were analyzed in order to develop a prototype auto-diagnostic system for infarction using computer auto-diagnostic software. The analysis results indicate that of the six parameters measured, the average brightness, average contrast, flatness, and uniformity show a high cognition rate whereas the degree of skewness and entropy show a low cognition rate. On the basis of these results, it was suggested that a digital CT image obtained using the computer auto-diagnostic software can be used to provide valuable information for general CT image auto-detection and diagnosis for pre-reading. This system is highly advantageous because it can achieve early diagnosis of the disease and it can be used as supplementary data in image reading. Further, it is expected to enable accurate medical image detection and reduced diagnostic time in final-reading.

Detection of Lung Nodule on Temporal Subtraction Images Based on Artificial Neural Network

  • Tokisa, Takumi;Miyake, Noriaki;Maeda, Shinya;Kim, Hyoung-Seop;Tan, Joo Kooi;Ishikawa, Seiji;Murakami, Seiichi;Aoki, Takatoshi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.137-142
    • /
    • 2012
  • The temporal subtraction technique as one of computer aided diagnosis has been introduced in medical fields to enhance the interval changes such as formation of new lesions and changes in existing abnormalities on deference image. With the temporal subtraction technique radiologists can easily detect lung nodules on visual screening. Until now, two-dimensional temporal subtraction imaging technique has been introduced for the clinical test. We have developed new temporal subtraction method to remove the subtraction artifacts which is caused by mis-registration on temporal subtraction images of lungs on MDCT images. In this paper, we propose a new computer aided diagnosis scheme for automatic enhancing the lung nodules from the temporal subtraction of thoracic MDCT images. At first, the candidates regions included nodules are detected by the multiple threshold technique in terms of the pixel value on the temporal subtraction images. Then, a rule-base method and artificial neural networks is utilized to remove the false positives of nodule candidates which is obtained temporal subtraction images. We have applied our detection of lung nodules to 30 thoracic MDCT image sets including lung nodules. With the detection method, satisfactory experimental results are obtained. Some experimental results are shown with discussion.

Positive Predictive Values of Abnormality Scores From a Commercial Artificial Intelligence-Based Computer-Aided Diagnosis for Mammography

  • Si Eun Lee;Hanpyo Hong;Eun-Kyung Kim
    • Korean Journal of Radiology
    • /
    • v.25 no.4
    • /
    • pp.343-350
    • /
    • 2024
  • Objective: Artificial intelligence-based computer-aided diagnosis (AI-CAD) is increasingly used in mammography. While the continuous scores of AI-CAD have been related to malignancy risk, the understanding of how to interpret and apply these scores remains limited. We investigated the positive predictive values (PPVs) of the abnormality scores generated by a deep learning-based commercial AI-CAD system and analyzed them in relation to clinical and radiological findings. Materials and Methods: From March 2020 to May 2022, 656 breasts from 599 women (mean age 52.6 ± 11.5 years, including 0.6% [4/599] high-risk women) who underwent mammography and received positive AI-CAD results (Lunit Insight MMG, abnormality score ≥ 10) were retrospectively included in this study. Univariable and multivariable analyses were performed to evaluate the associations between the AI-CAD abnormality scores and clinical and radiological factors. The breasts were subdivided according to the abnormality scores into groups 1 (10-49), 2 (50-69), 3 (70-89), and 4 (90-100) using the optimal binning method. The PPVs were calculated for all breasts and subgroups. Results: Diagnostic indications and positive imaging findings by radiologists were associated with higher abnormality scores in the multivariable regression analysis. The overall PPV of AI-CAD was 32.5% (213/656) for all breasts, including 213 breast cancers, 129 breasts with benign biopsy results, and 314 breasts with benign outcomes in the follow-up or diagnostic studies. In the screening mammography subgroup, the PPVs were 18.6% (58/312) overall and 5.1% (12/235), 29.0% (9/31), 57.9% (11/19), and 96.3% (26/27) for score groups 1, 2, 3, and 4, respectively. The PPVs were significantly higher in women with diagnostic indications (45.1% [155/344]), palpability (51.9% [149/287]), fatty breasts (61.2% [60/98]), and certain imaging findings (masses with or without calcifications and distortion). Conclusion: PPV increased with increasing AI-CAD abnormality scores. The PPVs of AI-CAD satisfied the acceptable PPV range according to Breast Imaging-Reporting and Data System for screening mammography and were higher for diagnostic mammography.

Texture Feature analysis using Computed Tomography Imaging in Fatty Liver Disease Patients (Fatty Liver 환자의 컴퓨터단층촬영 영상을 이용한 질감특징분석)

  • Park, Hyong-Hu;Park, Ji-Koon;Choi, Il-Hong;Kang, Sang-Sik;Noh, Si-Cheol;Jung, Bong-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.2
    • /
    • pp.81-87
    • /
    • 2016
  • In this study we proposed a texture feature analysis algorithm that distinguishes between a normal image and a diseased image using CT images of some fatty liver patients, and generates both Eigen images and test images which can be applied to the proposed computer aided diagnosis system in order to perform a quantitative analysis for 6 parameters. And through the analysis, we derived and evaluated the recognition rate of CT images of fatty liver. As the results of examining over 30 example CT images of fatty liver, the recognition rates representing a specific texture feature-value are as follows: some appeared to be as high as 100% including Average Gray Level, Entropy 96.67%, Skewness 93.33%, and Smoothness while others showed a little low disease recognition rate: 83.33% for Uniformity 86.67% and for Average Contrast 80%. Consequently, based on this research result, if a software that enables a computer aided diagnosis system for medical images is developed, it will lead to the availability for the automatic detection of a diseased spot in CT images of fatty liver and quantitative analysis. And they can be used as computer aided diagnosis data, resulting in the increased accuracy and the shortened time in the stage of final reading.

Clinical Analysis of Traumatic Pyomyositis in Emergency Patients (응급실로 내원한 외상성 화농성 근염 환자의 분석)

  • Na, Ji Ung;Song, Hyoung Gon
    • Journal of Trauma and Injury
    • /
    • v.19 no.1
    • /
    • pp.81-88
    • /
    • 2006
  • Purpose: Pyomyositis is a rare disease in temperature climate region. The diagnosis of pyomyositis is often delayed, and pyomyositis is often misdiagnosed in the emergency department. Methods: The medical records of 11 patients who were diagnosed as having traumatic pyomyositis in the emergency department at Samsung Medical Center in Seoul, Korea, between 2000 and 2006 were reviewed. Their clinical features, such as history, symptoms, clinical findings, duration from onset of symptoms to diagnosis, medical history, laboratory data, results of imaging studies and clinical course were collected. Results: The psoas muscles were most commonly involved. Computer tomography and magnetic resonance imaging aided in accurate diagnosis of the infection and of the extent of involvement. Incision, drainage, and antibiotics therapy eradicated the infectioin in all patients Conclusion: Pyomyositis should be a part of the differential diagnosis for patients with traumatic muscle pain. Radiologic evaluation, such as computer tomography and magnetic resonance imaging, must be considered in the diagnosis of traumatic pyomyositis.

Image Analysis Using Digital Radiographic Lumbar Spine of Patients with Osteoporosis (골다공증 환자의 Digital 방사선 요추 Image를 이용한 영상분석)

  • Park, Hyong-Hu;Lee, Jin-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.11
    • /
    • pp.362-369
    • /
    • 2014
  • This study aimed to propose an accurate diagnostic method for osteoporosis by realizing a computer-aided diagnosis system with the application of the statistical analysis of texture features using digital images of lateral lumbar spine of patients with osteoporosis and providing reliable supplementary diagnostic information by model experimental research for early diagnosis of diseases. For these purposes, digital images of lateral lumbar spine of normal individuals and patients with osteoporosis were used in the experiments, and the values of statistical texture features on the set ROI were expressed in six parameters. Among the texture feature values of the six parameters of osteoporosis, the highest and lowest recognition rates of 95 and 80% were shown in average gray level and uniformity, respectively. Moreover, all the six parameters showed recognition rates of over 80% for osteoporosis: 82.5% in average contrast, 90% in smoothness, 87.5% in skewness, and 87.5% in entropy. Therefore, if a program developing into a computer-aided diagnosis system for medical images is coded based on the results of this study, it is considered possible to be applied to preliminary diagnostic data for automatic detection of lesions and disease diagnosis using medical images, to provide information for definite diagnosis of diseases, to diagnose by limited device, and to be used to shorten the time to analyze medical images.

Texture Analysis for Classifying Normal Tissue, Benign and Malignant Tumors from Breast Ultrasound Image

  • Eom, Sang-Hee;Ye, Soo-Young
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.1
    • /
    • pp.58-64
    • /
    • 2022
  • Breast ultrasonic reading is critical as a primary screening test for the early diagnosis of breast cancer. However, breast ultrasound examinations show significant differences in diagnosis based on the difference in image quality according to the ultrasonic equipment, experience, and proficiency of the examiner. Accordingly, studies are being actively conducted to analyze the texture characteristics of normal breast tissue, positive tumors, and malignant tumors using breast ultrasonography and to use them for computer-assisted diagnosis. In this study, breast ultrasonography was conducted to select 247 ultrasound images of 71 normal breast tissues, 87 fibroadenomas among benign tumors, and 89 malignant tumors. The selected images were calculated using a statistical method with 21 feature parameters extracted using the gray level co-occurrence matrix algorithm, and classified as normal breast tissue, benign tumor, and malignancy. In addition, we proposed five feature parameters that are available for computer-aided diagnosis of breast cancer classification. The average classification rate for normal breast tissue, benign tumors, and malignant tumors, using this feature parameter, was 82.8%.