• Title/Summary/Keyword: Computer-Assisted Radiotherapy Planning

Search Result 7, Processing Time 0.022 seconds

Volumetric-Modulated Arc Radiotherapy Using Knowledge-Based Planning: Application to Spine Stereotactic Body Radiotherapy

  • Jeong, Chiyoung;Park, Jae Won;Kwak, Jungwon;Song, Si Yeol;Cho, Byungchul
    • Progress in Medical Physics
    • /
    • v.30 no.4
    • /
    • pp.94-103
    • /
    • 2019
  • Purpose: To evaluate the clinical feasibility of knowledge-based planning (KBP) for volumetric-modulated arc radiotherapy (VMAT) in spine stereotactic body radiotherapy (SBRT). Methods: Forty-eight VMAT plans for spine SBRT was studied. Two planning target volumes (PTVs) were defined for simultaneous integrated boost: PTV for boost (PTV-B: 27 Gy/3fractions) and PTV elective (PTV-E: 24 Gy/3fractions). The expert VMAT plans were manually generated by experienced planners. Twenty-six plans were used to train the KBP model using Varian RapidPlan. With the trained KBP model each KBP plan was automatically generated by an individual with little experience and compared with the expert plan (closed-loop validation). Twenty-two plans that had not been used for KBP model training were also compared with the KBP results (open-loop validation). Results: Although the minimal dose of PTV-B and PTV-E was lower and the maximal dose was higher than those of the expert plan, the difference was no larger than 0.7 Gy. In the closed-loop validation, D1.2cc, D0.35cc, and Dmean of the spinal cord was decreased by 0.9 Gy, 0.6 Gy, and 0.9 Gy, respectively, in the KBP plans (P<0.05). In the open-loop validation, only Dmean of the spinal cord was significantly decreased, by 0.5 Gy (P<0.05). Conclusions: The dose coverage and uniformity for PTV was slightly worse in the KBP for spine SBRT while the dose to the spinal cord was reduced, but the differences were small. Thus, inexperienced planners could easily generate a clinically feasible plan for spine SBRT by using KBP.

Comparison of 2-Dimensional and 3-Dimensional Conformal Treatment Plans in Gastric Cancer Radiotherapy

  • Adas, Yasemin Guzle;Andrieu, Meltem Nalca;Hicsonmez, Ayse;Atakul, Tugba;Dirican, Bahar;Aktas, Caner;Yilmaz, Sercan;Akyurek, Serap;Gokce, Saban Cakir;Ergocen, Salih
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7401-7405
    • /
    • 2014
  • Background: Postoperative chemoradiotherapy is accepted as standard treatment for stage IB-IV, M0 gastric cancer. Radiotherapy (RT) planning of gastric cancer is important because of the low radiation tolerance of surrounding critical organs. The purpose of this study was to compare the dosimetric aspects of 2-dimensional (2D) and 3-dimensional (3D) treatment plans, with the twin aims of evaluating the adequacy of 2D planning fields on coverage of planning target volume (PTV) and 3D conformal plans for both covering PTV and reducing the normal tissue doses. Materials and Methods: Thirty-six patients with stage II-IV gastric adenocarcinoma were treated with adjuvant chemoradiotherapy using 3DRT. For each patient, a second 2D treatment plan was generated. The two techniques were compared for target volume coverage and dose to normal tissues using dose volume histogram (DVH) analysis. Results: 3DRT provides more adequate coverage of the target volume. Comparative DVHs for the left kidney and spinal cord demonstrate lower radiation doses with the 3D technique. Conclusions: 3DRT produced better dose distributions and reduced radiation doses to left kidney and spinal cord compared to the 2D technique. For this reason it can be predicted that 3DRT will result in better tumor control and less normal tissue complications.

The accuracy of a 3D printing surgical guide determined by CBCT and model analysis

  • Ma, Boyoung;Park, Taeseok;Chun, Inkon;Yun, Kwidug
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.279-285
    • /
    • 2018
  • PURPOSE. The aim of this clinical study was to assess the accuracy of the implants placed using a universal digital surgical guide. MATERIALS AND METHODS. Among 17 patients, 28 posterior implants were included in this study. The digital image of the soft tissue acquired from cast scan and hard tissue from CBCT have been superimposed and planned the location, length, diameter of the implant fixture. Then digital surgical guides were created using 3D printer. Each of angle deviations, coronal, apical, depth deviations of planned and actually placed implants were calculated using CBCT scans and casts. To compare implant positioning errors by CBCT scans and plaster casts, data were analyzed with independent samples t-test. RESULTS. The results of the implant positioning errors calculated by CBCT and casts were as follows. The means for CBCT analyses were: angle deviation: $4.74{\pm}2.06^{\circ}$, coronal deviation: $1.37{\pm}0.80mm$, and apical deviation: $1.77{\pm}0.86mm$. The means for cast analyses were: angle deviation: $2.43{\pm}1.13^{\circ}$, coronal deviation: $0.82{\pm}0.44mm$, apical deviation: $1.19{\pm}0.46mm$, and depth deviation: $0.03{\pm}0.65mm$. There were statistically significant differences between the deviations of CBCT scans and cast. CONCLUSION. The model analysis showed lower deviation value comparing the CBCT analysis. The angle and length deviation value of the universal digital guide stent were accepted clinically.

Dosimetric advantages and clinical outcomes of simultaneous integrated boost intensity-modulated radiotherapy for anal squamous cell carcinoma

  • Sakanaka, Katsuyuki;Itasaka, Satoshi;Ishida, Yuichi;Fujii, Kota;Horimatsu, Takahiro;Mizowaki, Takashi;Sakai, Yoshiharu;Hiraoka, Masahiro
    • Radiation Oncology Journal
    • /
    • v.35 no.4
    • /
    • pp.368-379
    • /
    • 2017
  • Purpose: The purpose of this study was to explore the dosimetric difference between simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT) and three-dimensional conformal radiotherapy (3DCRT), and the clinical outcomes of anal squamous cell carcinoma (ASCC) chemoradiotherapy featuring SIB-IMRT. Materials and Methods: This study included ten patients with ASCC who underwent chemoradiotherapy using SIB-IMRT with 5-fluorouracil and mitomycin C. SIB-IMRT delivered 54 Gy to each primary tumor plus metastatic lymph nodes and 45 Gy to regional lymph nodes, in 30 fractions. Four patients received additional boosts to the primary tumors and metastatic lymph nodes; the median total dose was 54 Gy (range, 54 to 60 Gy). We additionally created 3DCRT plans following the Radiation Therapy Oncology Group 9811 protocol to allow dosimetric comparisons with SIB-IMRT. Locoregional control, overall survival, and toxicity were calculated for the clinical outcome evaluation. Results: Compared to 3DCRT, SIB-IMRT significantly reduced doses to the external genitalia, bladder, and intestine, delivering the doses to target and elective nodal region. At a median follow-up time of 46 months, 3-year locoregional control and overall survival rates were 88.9% and 100%, respectively. Acute toxicities were treated conservatively. All patients completed radiotherapy with brief interruptions (range, 0 to 2 days). No patient experienced ${\geq}grade$ 3 late toxicity during the follow-up period. Conclusion: The dosimetric advantages of SIB-IMRT appeared to reduce the toxicity of chemoradiotherapy for ASCC achieving high locoregional control in the extended period.

A predictive model to guide management of the overlap region between target volume and organs at risk in prostate cancer volumetric modulated arc therapy

  • Mattes, Malcolm D.;Lee, Jennifer C.;Elnaiem, Sara;Guirguis, Adel;Ikoro, N.C.;Ashamalla, Hani
    • Radiation Oncology Journal
    • /
    • v.32 no.1
    • /
    • pp.23-30
    • /
    • 2014
  • Purpose: The goal of this study is to determine whether the magnitude of overlap between planning target volume (PTV) and rectum ($Rectum_{overlap}$) or PTV and bladder ($Bladder_{overlap}$) in prostate cancer volumetric-modulated arc therapy (VMAT) is predictive of the dose-volume relationships achieved after optimization, and to identify predictive equations and cutoff values using these overlap volumes beyond which the Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC) dose-volume constraints are unlikely to be met. Materials and Methods: Fifty-seven patients with prostate cancer underwent VMAT planning using identical optimization conditions and normalization. The PTV (for the 50.4 Gy primary plan and 30.6 Gy boost plan) included 5 to 10 mm margins around the prostate and seminal vesicles. Pearson correlations, linear regression analyses, and receiver operating characteristic (ROC) curves were used to correlate the percentage overlap with dose-volume parameters. Results: The percentage $Rectum_{overlap}$ and $Bladder_{overlap}$ correlated with sparing of that organ but minimally impacted other dose-volume parameters, predicted the primary plan rectum $V_{45}$ and bladder $V_{50}$ with $R^2$ = 0.78 and $R^2$ = 0.83, respectively, and predicted the boost plan rectum $V_{30}$ and bladder $V_{30}$ with $R^2$ = 0.53 and $R^2$ = 0.81, respectively. The optimal cutoff value of boost $Rectum_{overlap}$ to predict rectum $V_{75}$ >15% was 3.5% (sensitivity 100%, specificity 94%, p < 0.01), and the optimal cutoff value of boost $Bladder_{overlap}$ to predict bladder $V_{80}$ >10% was 5.0% (sensitivity 83%, specificity 100%, p < 0.01). Conclusion: The degree of overlap between PTV and bladder or rectum can be used to accurately guide physicians on the use of interventions to limit the extent of the overlap region prior to optimization.

Comparison between the Calculated and Measured Doses in the Rectum during High Dose Rate Brachytherapy for Uterine Cervical Carcinomas (자궁암의 고선량율 근접 방사선치료시 전산화 치료계획 시스템과 in vivo dosimetry system 을 이용하여 측정한 직장 선량 비교)

  • Chung, Eun-Ji;Lee, Sang-Hoon
    • Radiation Oncology Journal
    • /
    • v.20 no.4
    • /
    • pp.396-404
    • /
    • 2002
  • Purpose : Many papers support a correlation between rectal complications and rectal doses in uterine cervical cancer patients treated with radical radiotherapy. In vivo dosimetry in the rectum following the ICRU report 38 contributes to the quality assurance in HDR brachytherapy, especially in minimizing side effects. This study compares the rectal doses calculated in the radiation treatment planning system to that measured with a silicon diode the in vivo dosimetry system. Methods : Nine patients, with a uterine cervical carcinoma, treated with Iridium-192 high dose rate brachytherapy between June 2001 and Feb. 2002, were retrospectively analysed. Six to eight-fractions of high dose rate (HDR)-intracavitary radiotherapy (ICR) were delivered two times per week, with a total dose of $28\~32\;Gy$ to point A. In 44 applications, to the 9 patients, the measured rectal doses were analyzed and compared with the calculated rectal doses using the radiation treatment planning system. Using graphic approximation methods, in conjunction with localization radiographs, the expected dose values at the detector points of an intrarectal semiconductor dosimeter, were calculated. Results : There were significant differences between the calculated rectal doses, based on the simulation radiographs, and the calculated rectal doses, based on the radiographs in each fraction of the HDR ICR. Also, there were significant differences between the calculated and measured rectal doses based on the in-vivo diode dosimetry system. The rectal reference point on the anteroposterior line drawn through the lower end of the uterine sources, according to ICRU 38 report, received the maximum rectal doses in only 2 out of the nine patients $(22.2\%)$. Conclusion : In HDR ICR planning for conical cancer, optimization of the dose to the rectum by the computer-assisted planning system, using radiographs in simulation, is improper. This study showed that in vivo rectal dosimetry, using a diode detector during the HDR ICR, could have a useful role in quality control for HDR brachytherapy in cervical carcinomas. The importance of individual dosimeters for each HDR ICR is clear. In some departments that do not have the in vivo dosimetry system, the radiation oncologist has to find, from lateral fluoroscopic findings, the location of the rectal marker before each fractionated HDR brachytherapy, which is a necessary and important step of HDR brachytherapy for cervical cancer.

Piroxicam, Mitoxantrone, and Hypofractionated Radiation Therapy with Volumetric Modulated Arc Therapy for Treating Urinary Transitional Cell Carcinoma in a Dog: A Case Report

  • Hwang, Tae-Sung;An, Soyon;Choi, Moon-Young;Huh, Chan;Song, Joong-Hyun;Jung, Dong-In;Lee, Hee Chun
    • Journal of Veterinary Clinics
    • /
    • v.39 no.1
    • /
    • pp.16-22
    • /
    • 2022
  • A 12-year-old spayed female beagle dog was presented with pollakiuria and stranguria. Abdominal ultrasonography identified irregular a marginated, hyperechoic mass in the urethra and trigon area of the bladder. Computed tomography (CT) revealed a heterogeneous mass in the trigone area leading to a urethra. There was no evidence of regional or distant metastasis. Cytologic analysis suspected transitional cell carcinoma (TCC). The patient was treated with piroxicam, mitoxantrone, and once weekly fractionated radiation therapy (RT) with volumetric modulated arc therapy (VMAT). A follow-up CT scan at 6 months after RT revealed a reduction in tumor size. At 17 months after the start of RT, the patient became severely anorectic and lethargic. Ultrasound examination revealed a hyperechoic mass in the apex area of bladder while the trigone area of the bladder and urethra appeared normal. Multiple hypoechoic nodules of various sizes were found in the liver and spleen. The patient was humanely euthanized at the request of the owner. A combination of piroxicam, mitoxantrone, and hypofractionated RT with VMAT protocol was well tolerated. This case described tumor response and survival time of a canine TCC treated with piroxicam, mitoxantrone, and once weekly palliative RT using computer-assisted planning and VMAT.