• Title/Summary/Keyword: Computer-Aided-Design

Search Result 1,315, Processing Time 0.024 seconds

Effect of surface treatment on shear bond strength of relining material and 3D-printed denture base

  • Park, Se-Jick;Lee, Joon-Seok
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.4
    • /
    • pp.262-272
    • /
    • 2022
  • PURPOSE. This study aimed to analyze the shear bond strength between the 3D-printed denture base and the chairside relining material, according to the surface treatment. MATERIALS AND METHODS. Cylindrical specimens were prepared using DENTCA Denture Base II. The experimental groups were divided into 6 (n = 10): no surface treatment (C), Tokuyama Rebase II Normal adhesive (A), sandblasting (P), sandblasting and adhesive (PA), sandblasting and silane (PS), and the Rocatec system (PPS). After bonding the chairside relining material to the center of the specimens in a cylindrical shape, they were stored in distilled water for 24 hours. Shear bond strength was measured using a universal testing machine, and failure mode was analyzed with a scanning electron microscope. Shear bond strength values were analyzed using one-way analysis of variance, and Tukey's honest significant difference test was used for post-hoc analysis (P < .05). RESULTS. Group PPS exhibited significantly higher shear bond strength than all other groups. Groups P and PA displayed significantly higher bond strengths than the control group. There were no significant differences between groups PS and A compared to the control group. Regarding the failure mode, adhesive failure occurred primarily in groups C and A, and mixed failure mainly in groups P, PA, PS, and PPS. CONCLUSION. The shear bond strength between the 3D-printed denture base and the chairside relining material exhibited significant differences according to the surface treatment methods. It is believed that excellent adhesive strength will be obtained when the Rocatec system is applied to 3D-printed dentures in clinical practice.

Six-year clinical performance of lithium disilicate glass-ceramic CAD-CAM versus metal-ceramic crowns

  • Ahmed Aziz;Omar El-Mowafy
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.1
    • /
    • pp.44-54
    • /
    • 2023
  • PURPOSE. To assess the clinical performance of monolithic CAD-CAM lithium disilicate glass-ceramic (LDGC) crowns and metal-ceramic (MC) crowns provided by predoctoral students. This study also assessed the effects of patient and provider-related factors on their clinical performance as well as patient preference for these types of crowns. MATERIALS AND METHODS. Twenty-five patients who received 50 crowns (25 LDGC CAD-CAM and 25 MC) provided by predoctoral students were retrospectively examined. LDGC CAD-CAM crowns were milled in-house using the CEREC Bluecam system and cemented with either RelyX Unicem or Calibra Esthetic resin cements. MC crowns were cemented with RelyX Unicem cement. Clinical assessment of the crowns and the supporting periodontal structures were performed following the modified California Dental Association (CDA) criteria. Patients' preference was recorded using a visual analog scale (VAS). The results were statistically analyzed using log-rank test, Pearson Chi-squared test and Kaplan-Meier survival analysis. RESULTS. Twelve complications were observed in the MC crown group (9-esthetic, 2-technical and 1-biological). In comparison, 2 complications in the LDGC CAD-CAM crown group were observed (1-technical and 1-esthetic). The 6-year cumulative survival rates for MC crowns and LDGC CAD-CAM were 90.8% and 96%, respectively, whereas the success rates were 83.4% and 96%, respectively. Overall, patients preferred the esthetic outcomes of LDGC CAD-CAM crowns over MC crowns. CONCLUSION. The high survival and success rates, low number of complications, and the high level of patients' acceptance of monolithic LDGC CAD-CAM crowns lend them well as predictable and viable alternatives to the "gold standard" MC crowns.

Accuracy of Thoracolumbar Spine K-Wire Placement in Toy, Small and Medium Breed Dogs: Novice Surgeons with 3D Printed Patient-Specific Guide versus an Experienced Surgeon with Freehand Techniques

  • Hwa-Joeng Shin;Hae-Beom Lee;Yoon-Ho Roh
    • Journal of Veterinary Clinics
    • /
    • v.39 no.6
    • /
    • pp.294-301
    • /
    • 2022
  • Three-dimensional (3D) printing technique has been widely used for accurate screw and pin placement in orthopedic surgery and neurosurgery. However, there are few reports comparing the accuracy between the patient-specific guides and freehand Kirschner wire (K-wire) placement in toy, small and medium breed dogs. This study aimed to assess the accuracy of 3D printed patient-specific guides (PSGs) in pin insertion in the thoracolumbar vertebrae of toy breed dogs and compare the outcomes between novice and experienced surgeons. The experiment was conducted on the thoracolumbar vertebrae of 21 euthanized toy breed dogs (median weight, 5.95 kg). The optimal insertion angle placement was determined and patient-specific guides for K-wire insertion were designed and 3D printed using computed tomography (CT) and a 3D computer-aided design program of three vertebrae (Thoracic 12-Lumbar 1). K-wire tracts were made by experienced and novice surgeons and compared to assess the accuracy based on postoperative CT. Based on postoperative CT, in the experienced group, 61 out of 63 pins (96.8%) were fully contained inside the vertebral body and lamina, whereas two pins (3.2%) had perforated the vertebral canal (grade 3, 2-4 mm breach). However, all the pins in the novice group were fully contained. The use of 3D printed PSGs for pin insertion in the thoracolumbar region is an accurate and safe alternative to freehand screw placement by novice surgeons in toy, small and medium breed dogs. Operations with 3D printed PSGs allow novice surgeons to achieve better or similar outcomes in accurate placement of pin/screws in vertebrae.

Evaluation of marginal and internal fit of metal copings fabricated by selective laser melting (SLM 방식으로 제작한 도재관 금속하부구조물의 변연 및 내면 적합도 평가)

  • Sung-Ryung Bae;Ha-Bin Lee;Mi-Jun Noh;Ji-Hwan Kim
    • Journal of Technologic Dentistry
    • /
    • v.45 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Purpose: To evaluate the marginal and internal fit of metal coping fabricated by a metal three-dimensional (3D) printer that uses selective laser melting (SLM). Methods: An extraoral scanner was used to scan a die of the prepared maxillary right first molar, and the coping was designed using computer-aided design software and saved as an stereo lithography (STL) file. Ten specimens were printed with an SLM-type metal 3D printer (SLM group), and 10 more specimens were fabricated by casting the castable patterns output generated by a digital light processing-type resin 3D printer (casting the 3D printed resin patterns [CRP] group). The fit was measured using the silicon replica technique, and 8 points (A to H) were set per specimen to measure the marginal (points A, H) and internal (points B~G) gaps. The differences among the groups were compared using the Mann-Whitney U-test (α=0.05). Results: The mean of marginal fit in the SLM group was 69.67±18.04 ㎛, while in the CRP group was 117.10±41.95 ㎛. The internal fit of the SLM group was 95.18±41.20 ㎛, and that of the CRP group was 86.35±32 ㎛. As a result of statistical analysis, there was a significant difference in marginal fit between the SLM and CRP groups (p<0.05); however, there was no significant difference in internal fit between the SLM group and the CRP group (p>0.05). Conclusion: The marginal and internal fit of SLM is within the clinically acceptable range, and it seems to be applicable in terms of fit.

Using dental virtual patients with dynamic occlusion in esthetic restoration of anterior teeth: case reports (동적 교합을 나타내는 가상 환자의 형성을 통한 심미적인 전치부 보철 수복 증례)

  • Phil-Joon Koo;Yu-Sung Choi;Jong-Hyuk Lee;Seung-Ryong Ha
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.4
    • /
    • pp.328-343
    • /
    • 2023
  • Recently, a method of fabricating an esthetic anterior fixed prosthesis by integrating data such as three-dimensional facial scan and jaw motion to form a virtual patient with dynamic occlusion has been introduced. This enables smooth communication with patients during the diagnosis process, improves the predictability of esthetic prosthetic treatment, and lowers the possibility of occlusal adjustment. In this case report, a virtual patient with dynamic occlusion was created in which the results of the treatment were simulated, and esthetic maxillary anterior fixed prosthesis was fabricated. With the aid of the virtual patient, the final restorations were satisfactory both in terms of esthetic and function.

Comparison of fracture strength, surface hardness, and color stain of conventionally fabricated, 3D printed, and CAD-CAM milled interim prosthodontic materials after thermocycling

  • Mesut Yildirim;Filiz Aykent;Mahmut Sertac Ozdogan
    • The Journal of Advanced Prosthodontics
    • /
    • v.16 no.2
    • /
    • pp.115-125
    • /
    • 2024
  • PURPOSE. The purpose of this in vitro study was to investigate the fracture resistance, surface hardness, and color stain of 3D printed, CAD-CAM milled, and conventional interim materials. MATERIALS AND METHODS. A total of 80 specimens were fabricated from auto polymerizing polymethyl methacrylate (PMMA), bis-acryl composite resin, CAD-CAM polymethyl methacrylate resin (milled), and 3D printed composite resin (printed) (n = 20). Forty of them were crown-shaped, on which fracture strength test was performed (n = 10). The others were disc-shaped specimens (10 mm × 2 mm) and divided into two groups for surface hardness and color stainability tests before and after thermal cycling in coffee solution (n = 10). Color parameters were measured with a spectrophotometer before and after each storage period, and color differences (CIEDE2000 [DE00]) were calculated. The distribution of variables was measured with the Kolmogorov Smirnov test, and one-way analysis of variance (ANOVA), Tukey HSD, Kruskal-Wallis, Mann-Whitney U tests were used in the analysis of quantitative independent data. Paired sample t-test was used in the analysis of dependent quantitative data (P < .05). RESULTS. The highest crown fracture resistance values were determined for the 3D printed composite resin (P < .05), and the lowest were observed in the bis-acryl composite resin (P < .05). Before and after thermal cycling, increase in mean hardness values were observed only in 3D printed composite resin (P < .05) and the highest ΔE00 value were observed in PMMA resin for all materials (P < .05). CONCLUSION. 3D printing and CAD-CAM milled interim materials showed better fracture strength. After the coffee thermal cycle, the highest surface hardness value was again found in 3D printing and CAD-CAM milled interim samples and the color change of the bis-acryl resin-based samples and the additive production technique was higher than the PMMA resin and CAD-CAM milled resin samples.

Accuracy and time efficiency of conventional and digital outlining of extensions of denture foundation on preliminary casts

  • Anne Kaline Claudino Ribeiro;Aretha Heitor Verissimo;Rodrigo Falcao Carvalho Porto de Freitas;Rayanna Thayse Florencio Costa;Burak Yilmaz;Sandra Lucia Dantas de Moraes;Adriana da Fonte Porto Carreiro
    • The Journal of Advanced Prosthodontics
    • /
    • v.16 no.3
    • /
    • pp.139-150
    • /
    • 2024
  • PURPOSE. The purpose of this diagnostic study was to assess the accuracy and time efficiency of a digital method to draw the denture foundation extension outline on preliminary casts compared with the conventional technique. MATERIALS AND METHODS. A total of 28 preliminary edentulous casts with no anatomical landmarks were digitized using a laboratory scanner. The outlining of the entire basal seat of the denture was performed on preliminary casts and digitized. Casts with no extension outline were digitized and outlines were drawn using software (DWOS, Straumann). The accuracy of the extension outlined between both techniques was evaluated in the software (GOM Inspect; GOM GmbH) by file superimposition. Specificity and sensitivity tests were applied to measure accuracy. The paired t-test (95% CI) was used to compare the mean total area and the working time. RESULTS. The accuracy ranged from 0.57 to 0.92. The buccal and labial frenulum showed a lower value in the maxilla (0.57); while the area between the retromolar pad and buccal frenulum (0.64) showed a lower score in the mandible. The maxillary denture foundation and the working time for both arches were significantly longer for the digital method (P < .001). CONCLUSION. The denture foundation extension outline exhibited a sufficiently excellent accuracy for the digital method, except for the maxillary anterior region. However, the digital method required a longer working time.

Effect of cement space on marginal and internal fit of a zirconia core fabricated using by additive manufacturing (시멘트 공간이 적층 가공으로 제작한 지르코니아 하부구조물의 변연 및 내면 적합도에 미치는 영향)

  • Ji-Won Min;Se-Yeon Kim;Jae-Hong Kim
    • Journal of Technologic Dentistry
    • /
    • v.46 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • Purpose: The goal of this study was to determine the clinical acceptability of various cement space settings for the marginal and internal fit of a zirconia core manufactured using additive manufacturing. Methods: The maxillary right incisor served as the master model. After scanning the maxillary right incisor with a dental 3D (three-dimensional) scanner, the stereo lithography file was created using different cement space settings of 40, 120, and 200 ㎛ using computer-aided design software (Dental System 2018; 3Shape). The marginal and internal fit of the 3 groups were determined using the silicon replica technique. Measurement points were divided into the following three categories: margin, axial wall, and incisal. To ensure more accurate measurements, these three measurement points were divided into 8 points. The Shapiro-Wilk, one-way ANOVA, and Tukey's honestly significant difference test (for all tests α=0.05) were the statistical analyses that were included in the study. Results: The CS (cement space)-200 group had better marginal and internal fit than the CS-40 and CS-120 groups, and there were statistically significant differences at the marginal and incisal points, except for the axial wall points. CS-200 group, both marginal and internal fit were within 120 ㎛, which is the clinically acceptable value. Conclusion: This study suggests that a 200 ㎛ cement space setting is ideal for optimal marginal and internal fit of 3D-printed ceramic crowns.

Comparison of accuracy between free-hand and surgical guide implant placement among experienced and non-experienced dental implant practitioners: an in vitro study

  • Dler Raouf Hama;Bayad Jaza Mahmood
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.5
    • /
    • pp.388-401
    • /
    • 2023
  • Purpose: This study investigated the accuracy of free-hand implant surgery performed by an experienced operator compared to static guided implant surgery performed by an inexperienced operator on an anterior maxillary dental model arch. Methods: A maxillary dental model with missing teeth (No. 11, 22, and 23) was used for this in vitro study. An intraoral scan was performed on the model, with the resulting digital impression exported as a stereolithography file. Next, a cone-beam computed tomography (CBCT) scan was performed, with the resulting image exported as a Digital Imaging and Communications in Medicine file. Both files were imported into the RealGUIDE 5.0 dental implant planning software. Active Bio implants were selected to place into the model. A single stereolithographic 3-dimensional surgical guide was printed for all cases. Ten clinicians, divided into 2 groups, placed a total of 60 implants in 20 acrylic resin maxillary models. Due to the small sample size, the Mann-Whitney test was used to analyze mean values in the 2 groups. Statistical analyses were performed using SAS version 9.4. Results: The accuracy of implant placement using a surgical guide was significantly higher than that of free-hand implantation. The mean difference between the planned and actual implant positions at the apex was 0.68 mm for the experienced group using the free-hand technique and 0.14 mm for the non-experienced group using the surgical guide technique (P=0.019). At the top of the implant, the mean difference was 1.04 mm for the experienced group using the free-hand technique and 0.52 mm for the non-experienced group using the surgical guide technique (P=0.044). Conclusions: The data from this study will provide valuable insights for future studies, since in vitro studies should be conducted extensively in advance of retrospective or prospective studies to avoid burdening patients unnecessarily.

Stress Patterns in the Reconstructed Double Bundles of the Anterior Cruciate Ligament in Response to an Anterior Tibial Load and Rotatory Load: an Analysis using a 3-Dimensional Finite Element Model (삼차원 유한 요소 모델을 이용한 전방십자인대 이중다발 재건술 후 전방 전위 및 회전 부하에 따른 이식건 응력 양상 분석)

  • Seo, Young-Jin;Song, Si Young;Ahn, Jung Tae;Kim, Yoon-Sang;Ko, Jun Ho;Jang, Seong-Wook;Yoo, Yon-Sik
    • Journal of the Korean Arthroscopy Society
    • /
    • v.16 no.2
    • /
    • pp.160-166
    • /
    • 2012
  • Purpose: The aim of this study was to determine the patterns of the stress distribution within the reconstructed anterior cruciate ligament (ACL) double bundles in response to an anterior tibial load and rotatory load at $45^{\circ}$ flexed knee model by use of a 3-dimensional finite element analysis (FEM). Materials and Methods: The $0^{\circ}$ and $45^{\circ}$ flexed 3-D knee model were reconstructed based on the high resolution computed tomography (CT) images from the right knee of a healthy male subject. To simulate double bundle ACL reconstruction, in $0^{\circ}$ analytic model, four 7 mm diameter tunnels were created at the center of each anteromedial (AM) and posterolateral (PL) footprints on the femur and tibia. The grafts were inserted into the corresponding bone tunnels and then reconstructed knee model was flexed to $45^{\circ}$. As a next step, the 5 mm anterior tibial load and internal rotational load of $10^{\circ}$ were applied on the final Computer aided design (CAD) model. And then stress patterns of each bundle were assessed using a finite element analysis. Results: In response to the 5 mm of anterior tibial load, the AM bundle showed increased stresses around the tibial and femoral attachment sites; especially in the anterior aspect of the bundle. In the PL bundle, the highest stress concentration was also noticed on the anterior aspect of the bundle. Under $10^{\circ}$ internal rotational load, the stress concentration was predominant around the anterior aspect of the tibial attachment site within the AM bundle. The PL bundle also showed highest stress concentration on the anterior aspect of the bundle. Conclusion: Although the stress patterns were not identical among the AM and PL bundle, there were common trends in the stress distribution. The stress concentration was predominant on the anterior aspect of both bundles in response to the anterior tibial load and rotatory load.

  • PDF