• 제목/요약/키워드: Computer-Aided-Design

검색결과 1,322건 처리시간 0.02초

3차원 프린팅 기술에 의해 제작된 3본 금속 코어의 변연 간격 평가 (Evaluation of Marginal Gap of Three Unit Metal Cores Fabricated by 3-Dimensional Printing Technique)

  • 김재홍;김원수;김기백
    • 치위생과학회지
    • /
    • 제15권2호
    • /
    • pp.196-201
    • /
    • 2015
  • 본 연구에서는 최근 창조경제의 일환으로서 3차원 프린팅 기술의 개발이 눈에 띄게 발전함에 따라 치의학계 보철물 제작 기술에도 영향을 주고 있는 이 기술에 의해 제작된 3본 고정성 보철물의 임상적 허용 가능성을 변연 간격을 기준으로 가늠하여보고자 하였다. 3차원 프린팅 기술에 의해 제작된 보철물 평가와 관련한 연구가 부족함에 따라 본 연구 결과를 통해 해당 종사자들(치과의사, 치과위생과, 치과기공사)에게 참고자료를 제시하고자 하였다. 연구 결과들을 종합하여 보면 3차원 프린팅 기술에 의해 제작된 3본 고정성 보철물은 같은 증례를 대상으로 전통적인 제작방식에 의해 제작된 것보다 변연 간격이 우수하지 못하였다. 비록 몇몇 임상가들이 제시한 임상적 허용 수치 내에는 존재하였으나 기존의 제작 기술을 대신하기 위해서는 앞으로 많은 연구들을 통하여 기술의 발전이 이루어져야 할 것으로 생각된다.

Monolithic zirconia crowns: effect of thickness reduction on fatigue behavior and failure load

  • Prott, Lea Sophia;Spitznagel, Frank Akito;Bonfante, Estevam Augusto;Malassa, Meike Anne;Gierthmuehlen, Petra Christine
    • The Journal of Advanced Prosthodontics
    • /
    • 제13권5호
    • /
    • pp.269-280
    • /
    • 2021
  • PURPOSE. The objective of this study was to evaluate the effect of thickness reduction and fatigue on the failure load of monolithic zirconia crowns. MATERIALS AND METHODS. 140 CAD-CAM fabricated crowns (3Y-TZP, inCorisTZI, Dentsply-Sirona) with different ceramic thicknesses (2.0, 1.5, 1.0, 0.8, 0.5 mm, respectively, named G2, G1.5, G1, G0.8, and G0.5) were investigated. Dies of a mandibular first molar were made of composite resin. The zirconia crowns were luted with a resin composite cement (RelyX Unicem 2 Automix, 3M ESPE). Half of the specimens (n = 14 per group) were mouth-motion-fatigued (1.2 million cycles, 1.6 Hz, 200 N/ 5 - 55℃, groups named G2-F, G1.5-F, G1-F, G0.8-F, and G0.5-F). Single-load to failure was performed using a universal testing-machine. Fracture modes were analyzed. Data were statistically analyzed using a Weibull 2-parameter distribution (90% CI) to determine the characteristic strength and Weibull modulus differences among the groups. RESULTS. Three crowns (21%) of G0.8 and five crowns (36%) of G0.5 showed cracks after fatigue. Characteristic strength was the highest for G2, followed by G1.5. Intermediate values were observed for G1 and G1-F, followed by significantly lower values for G0.8, G0.8-F, and G0.5, and the lowest for G0.5-F. Weibull modulus was the lowest for G0.8, intermediate for G0.8-F and G0.5, and significantly higher for the remaining groups. Fatigue only affected G0.5-F. CONCLUSION. Reduced crown thickness lead to reduced characteristic strength, even under failure loads that exceed physiological chewing forces. Fatigue significantly reduced the failure load of 0.5 mm monolithic 3Y-TZP crowns.

Chitosan/hydroxyapatite composite coatings on porous Ti6Al4V titanium implants: in vitro and in vivo studies

  • Zhang, Ting;Zhang, Xinwei;Mao, Mengyun;Li, Jiayi;Wei, Ting;Sun, Huiqiang
    • Journal of Periodontal and Implant Science
    • /
    • 제50권6호
    • /
    • pp.392-405
    • /
    • 2020
  • Purpose: Titanium implants are widely used in the treatment of dentition defects; however, due to problems such as osseointegration failure, peri-implant bone resorption, and periimplant inflammation, their application is subject to certain restrictions. The surface modification of titanium implants can improve the implant success rate and meet the needs of clinical applications. The goal of this study was to evaluate the effect of the use of porous titanium with a chitosan/hydroxyapatite coating on osseointegration. Methods: Titanium implants with a dense core and a porous outer structure were prepared using a computer-aided design model and selective laser sintering technology, with a fabricated chitosan/hydroxyapatite composite coating on their surfaces. In vivo and in vitro experiments were used to assess osteogenesis. Results: The quasi-elastic gradient and compressive strength of porous titanium implants were observed to decrease as the porosity increased. The in vitro experiments demonstrated that, the porous titanium implants had no biological toxicity; additionally, the porous structure was shown to be superior to dense titanium with regard to facilitating the adhesion and proliferation of osteoblast-like MC3T3-E1 cells. The in vivo experimental results also showed that the porous structure was beneficial, as bone tissue could grow into the pores, thereby exhibiting good osseointegration. Conclusions: Porous titanium with a chitosan/hydroxyapatite coating promoted MC3T3-E1 cell proliferation and differentiation, and also improved osseointegration in vitro. This study has meaningful implications for research into ways of improving the surface structures of implants and promoting implant osseointegration.

미세운동을 가지는 탄두 및 기만체의 새로운 레이다 수신신호 모델링 방법 (Modeling Method of Receiving Radar Signals from Warhead and Decoy with Micro-Motion)

  • 최인오;박상홍;강기봉;김경태
    • 한국전자파학회논문지
    • /
    • 제30권3호
    • /
    • pp.243-251
    • /
    • 2019
  • 최근 탄두와 기만체 간의 변별을 수행하기 위하여 미세도플러 현상과 관련된 연구들이 활발히 진행되어 왔다. 여기서, 탄두와 기만체는 다양한 형상들로 정의될 수 있으며, 이들은 일반적으로 각각의 고유한 미세운동을 가지면서 기동한다. 이때, 이 표적들의 미세도플러 현상은 크기 및 위상 변조 특성으로 나뉘어 해석될 수 있으며, 대부분의 기존 연구들에서는 다양한 형상에 상관없이 크기 변조 특성을 근사적인 수학식으로만 정의하였다. 하지만, 보다 효율적인 변별을 위해서는 이 표적들의 크기 변조 현상에 대한 정확한 수학적 표현이 필요하다. 본 연구에서는 물리광학 기반의 크기 변조 특성을 모델링하기 위하여 다양한 형상의 탄두 및 기만체에 대한 새로운 레이다 수신신호 모델을 제안한 후, 전자기 수치해석 도구 및 캐드 모델을 사용한 수신신호들과 비교하여 제안된 레이다 수신신호 모델의 타당성을 검증하였다.

높은 지표각에서 해상 클러터 환경을 고려한 해상 표적 영상 생성 및 탐지 (Maritime Target Image Generation and Detection in a Sea Clutter Environment at High Grazing Angle)

  • 진승현;이경민;우선걸;김윤진;권준범;김홍락;김경태
    • 한국전자파학회논문지
    • /
    • 제30권5호
    • /
    • pp.407-417
    • /
    • 2019
  • 탄도 미사일은 상공에서 자유 낙하하며 표적을 요격하기 때문에 탄도 미사일에 부착되는 탐색기는 높은 지표각에서 해상 클러터 영향을 받게 되며, 그 결과 탐색기의 탐지 성능이 급격히 낮아지게 된다. 이를 해결하기 위해서는 다양한 시나리오 기반의 시뮬레이션들을 통한 해상 표적 탐지 성능 분석이 반드시 필요하다. 따라서 본 논문에서는 실제와 유사한 높은 지표각의 해상 클러터 수신 신호를 모델링한 후, 이를 신호 대 클러터 비에 따라 해상 표적 수신 신호와 합성하여 2차원 레이다 영상을 생성한다. 이후, 레이다 영상에 2차원 CA-CFAR 탐지기를 적용하여 다양한 시나리오에서 해상표적 탐지 성능을 분석하였다. CAD 모델과 전자기 수치해석 도구를 사용한 시뮬레이션 결과, 지표각과 방위각에 따라 해상 표적의 탐지 여부가 다르게 나타남을 확인할 수 있었다.

In vivo wear determination of novel CAD/CAM ceramic crowns by using 3D alignment

  • Aladag, Akin;Oguz, Didem;Comlekoglu, Muharrem Erhan;Akan, Ender
    • The Journal of Advanced Prosthodontics
    • /
    • 제11권2호
    • /
    • pp.120-127
    • /
    • 2019
  • PURPOSE. To determine wear amount of single molar crowns, made from four different restoratives, and opposing natural teeth through computerized fabrication techniques using 3D image alignment. MATERIALS AND METHODS. A total of 24 single crowns (N = 24 patients, age range: 18 - 50) were made from lithium disilicate (IPS E-max CAD), lithium silicate and zirconia based (Vita Suprinity CAD), resin matrix ceramic material (Cerasmart, GC), and dual matrix (Vita Enamic CAD) blocks. After digital impressions (Cerec 3D Bluecam, DentsplySirona), the crowns were designed and manufactured (Cerec 3, DentsplySirona). A dualcuring resin cement was used for cementation (Variolink Esthetic DC, Ivoclar). Then, measurement and recording of crowns and the opposing enamel surfaces with the intraoral scanner were made as well as at the third and sixth month follow-ups. All measurements were superimposed with a software (David-Laserscanner, V3.10.4). Volume loss due to wear was calculated from baseline to follow-up periods with Siemens Unigraphics NX 10 software. Statistical analysis was accomplished by Repeated Measures for ANOVA (SPSS 21) at = .05 significance level. RESULTS. After 6 months, insignificant differences of the glass matrix and resin matrix materials for restoration/enamel wear were observed (P>.05). While there were no significant differences between the glass matrix groups (P>.05), significant differences between the resin matrix group materials (P<.05) were obtained. Although Cerasmart and Enamic were both resin matrix based, they exhibited different wear characteristics. CONCLUSION. Glass matrix materials showed less wear both on their own and opposing enamel surfaces than resin matrix ceramic materials.

Effect of the volumetric dimensions of a complete arch on the accuracy of scanners

  • Kim, Min-Kyu;Son, KeunBaDa;Yu, Beom-Young;Lee, Kyu-Bok
    • The Journal of Advanced Prosthodontics
    • /
    • 제12권6호
    • /
    • pp.361-368
    • /
    • 2020
  • PURPOSE. The present study aimed to evaluate the accuracy of a desktop scanner and intraoral scanners based on the volumetric dimensions of a complete arch. MATERIALS AND METHODS. Seven reference models were fabricated based on the volumetric dimensions of complete arch (70%, 80%, 90%, 100%, 110%, 120%, and 130%). The reference models were digitized using an industrial scanner (Solutionix C500; MEDIT) for the fabrication of a computer-aided design (CAD) reference model (CRM). The reference models were digitized using three intraoral scanners (CS3600, Trios3, and i500) and one desktop scanner (E1) to fabricate a CAD test model (CTM). CRM and CTM were then superimposed using inspection software, and 3D analysis was conducted. For statistical analysis, one-way analysis of variance was used to verify the difference in accuracy based on the volumetric dimensions of the complete arch and the accuracy based on the scanners, and the differences among the groups were analyzed using the Tukey HSD test as a post-hoc test (α=.05). RESULTS. The three different scanners showed a significant difference in accuracy based on the volumetric dimensions of the complete arch (P<.05), but the desktop scanner did not show a significant difference in accuracy based on the volumetric dimensions of the complete arch (P=.808). CONCLUSION. The accuracy of the intraoral scanners was dependent on the volumetric dimensions of the complete arch, but the volumetric dimensions of the complete arch had no effect on the accuracy of the desktop scanner. Additionally, depending on the type of intraoral scanners, the accuracy differed according to the volumetric dimensions of the complete arch.

DLP 프린터로 출력한 임시의치용 전악 인공치아의 후경화에 따른 변형 분석 (Analysis of deformation according to post-curing of complete arch artificial teeth for temporary dentures printed with a DLP printer)

  • 김동연;이광영
    • 대한치과기공학회지
    • /
    • 제43권2호
    • /
    • pp.48-55
    • /
    • 2021
  • Purpose: This study aimed to analyze deformation according to post-curing of complete arch artificial teeth for temporary dentures printed with a digital light processing (DLP) printer. Methods: An edentulous model was prepared and an occlusal rim was produced. The edentulous model and occlusal rim were scanned using a model scanner. A complete denture was designed using a dental computer-aided design, and the denture base and artificial tooth were separated. Ten complete arch artificial teeth were printed using a 3D printer (DLP). Complete arch artificial teeth was classified into the following three groups: a group no post-curing (NC), a group with 10 minutes post-curing (10M), and a group with 20 minutes post-curing (20M). Specimens were scanned using a model scanner. The scanned data were overlapped with the reference data. Statistical analysis was performed using one-way ANOVA analysis of variance, Kruskal-Wallis test, and Mann-Whitney U test (α=0.05). Results: Regarding the overall deviation of complete arch artificial teeth, the NC group showed the lowest mean deviation of 111.13 ㎛ and the 20M group showed the highest mean deviation of 131.03 ㎛. There were statistically significant differences among the three groups (p<0.05). Conclusion: The complete arch artificial tooth showed deformation due to post-curing. In addition, the largest shrinkage deformation was observed at 10 minutes of post-curing, whereas the least deformation was observed at 20 minutes.

교합면의 교모형태에 따른 치과용 모형 스캐너의 정확도 평가 (Accuracy evaluation of dental model scanner according to occlusal attrition type)

  • 김동연;김지환;이범일;이주희;김원수;박진영
    • 대한치과기공학회지
    • /
    • 제42권4호
    • /
    • pp.313-320
    • /
    • 2020
  • Purpose: The purpose of this study is to compare and analyze the accuracy of single crowns based on the type of occlusal surface. Methods: A single crown wax pattern was fabricated in three types of occlusal surface. The prepared wax pattern was replicated with silicone, and stone was injected to create a stone model. The prepared specimens were scanned using a model scanner. Scans were classified into three groups, and each scan was performed six times to analyze the trueness and precision of a single crown. In addition, only the occlusal surface area was analyzed for trueness and precision. Data were analyzed using the Kruskal-Wallis H test, a nonparametric test (α=0.05). Results: With regard to the trueness value of the occlusal scan area, the no occlusal tooth attrition (NA) group showed the largest error of 3.5 ㎛, and the complete occlusal tooth attrition (CA) group showed the lowest value of 3.1 ㎛. The NA group had the greatest precision, and the medium occlusal tooth attrition (MA) group and CA group showed a low precision value of 3.2 ㎛; the difference between the groups was statistically significant (α=0.05). In the color difference map, the CA group showed a lower error than the NA group. Conclusion: The occlusal surface with severe attrition had excellent accuracy, but the accuracy of the group without attrition was low. There were significant differences between groups, but clinically acceptable values were shown.

2차원 곡면형 전극에서 정전기 흡착력의 아이소-지오메트릭 해석 (Isogeometric Analysis of Electrostatic Adhesive Forces in Two-Dimensional Curved Electrodes)

  • 오명훈;김재현;김현석;조선호
    • 한국전산구조공학회논문집
    • /
    • 제34권4호
    • /
    • pp.199-204
    • /
    • 2021
  • 본 논문에서는 정전기 흡착패드를 구성하는 곡면형 전극의 기하학적 엄밀성을 고려하기 위해 정전기 문제에 대하여 CAD에서 사용하는 NURBS 기저함수를 직접 사용하는 아이소-지오메트릭 해석 기법을 도입하였다. 정전기 흡착력을 곡선 접촉면에서 구하는데 법선 벡터의 영향이 크므로 엄밀한 기하형상을 고려하는 아이소-지오메트릭 해석이 강점을 갖는다. 수치 예제를 통해 곡면과 평면에서 반복 구조의 유무에 따른 파라메터 연구를 수행하여 곡면형 전극의 흡착력이 좋은 성능을 가짐을 보였다. 정전기 흡착력의 성분을 분석하였을 때 정전기 흡착력의 차이는 법선 성분 전기장의 증가로 인한 것으로 파악되었다. 결론적으로 곡면형 전극에서도 전극 사이 거리가 가까워지는 아래로 볼록인 경우가 가장 성능이 좋고, 위로 볼록인 경우에는 성능이 가장 낮음을 보였다.