• Title/Summary/Keyword: Computer optimization

Search Result 2,443, Processing Time 0.036 seconds

Optimization of Controller Parameters using A Memory Cell of Immune Algorithm (면역알고리즘의 기억세포를 이용한 제어기 파라메터의 최적화)

  • Park, Jin-Hyeon;Choe, Yeong-Gyu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.8
    • /
    • pp.344-351
    • /
    • 2002
  • The proposed immune algorithm has an uncomplicated structure and memory-cell mechanism as the optimization algorithm which imitates the principle of humoral immune response. We use the proposed algorithm to solve parameter optimization problems. Up to now, the applications of immune algorithm have been optimization problems with non-varying system parameters. Therefore the usefulness of memory-cell mechanism in immune algorithm is without. This paper proposes the immune algorithm using a memory-cell mechanism which can be the application of system with nonlinear varying parameters. To verified performance of the proposed immune algorithm, the speed control of nonlinear DC motor are performed. The results of Computer simulations represent that the proposed immune algorithm shows a fast convergence speed and a good control performances under the varying system parameters.

A Study on Nonlinear Parameter Optimization Problem using SDS Algorithm (SDS 알고리즘을 이용한 비선형 파라미터 최적화에 관한 연구)

  • Lee, Young-J.;Jang, Young-H.;Lee, Kwon-S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.623-625
    • /
    • 1998
  • This paper focuses on the fast convergence in nonlinear parameter optimization which is necessary for the fitting of nonlinear models to data. The simulated annealing(SA) and genetic algorithm(GA), which are widely used for combinatorial optimization problems, are stochastic strategy for search of the ground state and a powerful tool for optimization. However, their main disadvantage is the long convergence time by unnecessary extra works. It is also recognised that gradient-based nonlinear programing techniques would typically fail to find global minimum. Therefore, this paper develops a modified SA which is the SDS(Stochastic deterministic stochastic) algorithm can minimize cost function of optimal problem.

  • PDF

Development of Object-Oriented C++ Library of Optimization Algorithms (최적화 알고리듬들의 객체지향 C++ 라이브러리의 개발)

  • Hyun, Chang-Hun;Choe, Yeong-Il
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.115-123
    • /
    • 2000
  • There are many optimal design packages, but they are big ones and they have only a few kinds of optimal algorithm coded with Fortran and it is sometimes necessary for user to write down some codes into their packages. So it is hard for user to learn how to use and customize them. More over, there are no commercial home-made software for optimum design. So, in this paper, several famous optimum algorithms are coded and modulized with C++ which is known as a suitable computer language in order to build up more algorithms into one computer software. All algorithms developed with C++ here were tested for comparison with optimization tool box of MATLAB and are superior to MATLAB.

  • PDF

Optimum Rotor Shaping for Torque Improvement of Double Stator Switched Reluctance Motor

  • Tavakkoli, Mohammadali;Moallem, Mehdi
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1315-1323
    • /
    • 2014
  • Although the power density in Double Stator Switched Reluctance Motor (DSSRM) has been improved, the torque ripple is still very high. So, it is important to reduce the torque ripple for specific applications such as Electric Vehicles (EVs). In This paper, an effective rotor shaping optimization technique for torque ripple reduction of DSSRM is presented. This method leads to the lower torque pulsation without significant reduction in the average torque. The method is based on shape optimization of the rotor using Finite Element Method and Taguchi's optimization method for rotor reshaping for redistribution of the flux so that the phase inductance profile has smoother variation as the rotor poles move into alignment with excited stator poles. To check on new design robustness, mechanical analysis was used to evaluate structural conformity against local electromagnetic forces which cause vibration and deformation. The results show that this shape optimization technique has profound effect on the torque ripple reduction.

Analysis and optimal design of fiber-reinforced composite structures: sail against the wind

  • Nascimbene, R.
    • Wind and Structures
    • /
    • v.16 no.6
    • /
    • pp.541-560
    • /
    • 2013
  • The aim of the paper is to use optimization and advanced numerical computation of a sail fiber-reinforced composite model to increase the performance of a yacht under wind action. Designing a composite-shell system against the wind is a very complex problem, which only in the last two decades has been approached by advanced modeling, optimization and computer fluid dynamics (CFDs) based methods. A sail is a tensile structure hoisted on the rig of a yacht, inflated by wind pressure. Our objective is the multiple criteria optimization of a sail, the engine of a yacht, in order to obtain the maximum thrust force for a given load distribution. We will compute the best possible yarn thickness orientation and distribution in order to minimize the total fiber volume with some displacement constraints and in order to leave the most uniform stress distribution over the whole structure. In this paper our attention will be focused on computer simulation, modeling and optimization of a sail-shape mathematical model in different regatta and wind conditions, with the purpose of improving maneuverability and speed made good.

Enhancement OLSR Routing Protocol using Particle Swarm Optimization (PSO) and Genrtic Algorithm (GA) in MANETS

  • Addanki, Udaya Kumar;Kumar, B. Hemantha
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.131-138
    • /
    • 2022
  • A Mobile Ad-hoc Network (MANET) is a collection of moving nodes that communicate and collaborate without relying on a pre-existing infrastructure. In this type of network, nodes can freely move in any direction. Routing in this sort of network has always been problematic because of the mobility of nodes. Most existing protocols use simple routing algorithms and criteria, while another important criterion is path selection. The existing protocols should be optimized to resolve these deficiencies. 'Particle Swarm Optimization (PSO)' is an influenced method as it resembles the social behavior of a flock of birds. Genetic algorithms (GA) are search algorithms that use natural selection and genetic principles. This paper applies these optimization models to the OLSR routing protocol and compares their performances across different metrics and varying node sizes. The experimental analysis shows that the Genetic Algorithm is better compared to PSO. The comparison was carried out with the help of the simulation tool NS2, NAM (Network Animator), and xgraph, which was used to create the graphs from the trace files.

Shared Spatio-temporal Attention Convolution Optimization Network for Traffic Prediction

  • Pengcheng, Li;Changjiu, Ke;Hongyu, Tu;Houbing, Zhang;Xu, Zhang
    • Journal of Information Processing Systems
    • /
    • v.19 no.1
    • /
    • pp.130-138
    • /
    • 2023
  • The traffic flow in an urban area is affected by the date, weather, and regional traffic flow. The existing methods are weak to model the dynamic road network features, which results in inadequate long-term prediction performance. To solve the problems regarding insufficient capacity for dynamic modeling of road network structures and insufficient mining of dynamic spatio-temporal features. In this study, we propose a novel traffic flow prediction framework called shared spatio-temporal attention convolution optimization network (SSTACON). The shared spatio-temporal attention convolution layer shares a spatio-temporal attention structure, that is designed to extract dynamic spatio-temporal features from historical traffic conditions. Subsequently, the graph optimization module is used to model the dynamic road network structure. The experimental evaluation conducted on two datasets shows that the proposed method outperforms state-of-the-art methods at all time intervals.

Optimization of a Train Suspension using Kriging Model (크리깅 모델에 의한 철도차량 현수장치 최적설계)

  • Park, Chan-Kyoung;Lee, Kwang-Ki;Lee, Tae-Hee;Bae, Dae-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.864-870
    • /
    • 2003
  • In recent engineering, the designer has become more and more dependent on the computer simulations such as FEM(Finite Element Method) and BEM(Boundary Element Method). In order to optimize such implicit models more efficiently and reliably, the meta -modeling technique has been developed for solving such a complex problems combined with the DACE(Design and Analysis of Computer Experiments). It is widely used for exploring the engineer's design space and for building approximation models in order to facilitate an effective solution of multi-objective and multi-disciplinary optimization problems. Optimization of a train suspension is performed according to the minimization of forty -six responses that represent ten ride comforts, twelve derailment quotients, twelve unloading ratios, and twelve stabilities by using the Kriging model of a train suspension. After each Kriging model is constructed, multi -objective optimal solutions are achieved by using a nonlinear programming method called SQP(Sequential Quadratic Programming).

A random forest-regression-based inverse-modeling evolutionary algorithm using uniform reference points

  • Gholamnezhad, Pezhman;Broumandnia, Ali;Seydi, Vahid
    • ETRI Journal
    • /
    • v.44 no.5
    • /
    • pp.805-815
    • /
    • 2022
  • The model-based evolutionary algorithms are divided into three groups: estimation of distribution algorithms, inverse modeling, and surrogate modeling. Existing inverse modeling is mainly applied to solve multi-objective optimization problems and is not suitable for many-objective optimization problems. Some inversed-model techniques, such as the inversed-model of multi-objective evolutionary algorithm, constructed from the Pareto front (PF) to the Pareto solution on nondominated solutions using a random grouping method and Gaussian process, were introduced. However, some of the most efficient inverse models might be eliminated during this procedure. Also, there are challenges, such as the presence of many local PFs and developing poor solutions when the population has no evident regularity. This paper proposes inverse modeling using random forest regression and uniform reference points that map all nondominated solutions from the objective space to the decision space to solve many-objective optimization problems. The proposed algorithm is evaluated using the benchmark test suite for evolutionary algorithms. The results show an improvement in diversity and convergence performance (quality indicators).

Simulation Optimization Methods with Application to Machining Process (시뮬레이션 최적화 기법과 절삭공정에의 응용)

  • 양병희
    • Journal of the Korea Society for Simulation
    • /
    • v.3 no.2
    • /
    • pp.57-67
    • /
    • 1994
  • For many practical and industrial optimization problems where some or all of the system components are stochastic, the objective functions cannot be represented analytically. Therefore, modeling by computer simulation is one of the most effective means of studying such complex systems. In this paper, with discussion of simulation optimization techniques, a case study in machining process for application of simulation optimization is presented. Most of optimization techniques can be classified as single-or multiple-response techniques. The optimization of single-response category, these strategies are gradient based search methods, stochastic approximate method, response surface method, and heuristic search methods. In the multiple-response category, there are basically five distinct strategies for treating the responses and finding the optimum solution. These strategies are graphical method, direct search method, constrained optimization, unconstrained optimization, and goal programming methods. The choice of the procedure to employ in simulation optimization depends on the analyst and the problem to be solved.

  • PDF