• Title/Summary/Keyword: Computer generated holography

Search Result 47, Processing Time 0.035 seconds

Fast Generation of Digital Hologram Based on Multi-GPU (Multi-GPU 기반의 고속 디지털 홀로그램 생성)

  • Song, Joong-Seok;Park, Jung-Sik;Seo, Young-Ho;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.1009-1017
    • /
    • 2011
  • Fast generation of digital hologram is of importance for real-time holography broadcasting. In this paper, we propose such a method that parallelizes the Computer-Generated Holography (CGH) algorithm for digital hologram generation and make it faster using Multi Graphic Processing Unit (Multi-GPU) with help of the Compute Unified Device Architecture (CUDA) and the Open Multi-Processing (OpenMP). In addition, we propose optimization methods such as fixation variable, vectorization, and loop unrolling for making the CGH algorithm much faster. Experimental results show that our method is about 9,700 times faster than a CPU-based one.

Computational load reduction by avoiding the recalculation of angular redundancy in computer-generated holograms

  • Jia, Jia;Chen, Jhensi;Chu, Daping
    • ETRI Journal
    • /
    • v.41 no.1
    • /
    • pp.52-60
    • /
    • 2019
  • A fast hologram calculation approach is proposed to reduce computational load by avoiding the recalculation of redundancy information. In the proposed method, the hologram is divided into several sub-holograms that record and reconstruct different views of 3D objects. The sub-hologram is generated from its adjacent calculated sub-holograms by only adding the holograms of difference images between an adjacent pair of views. The repetitive information of two adjacent views is called angular redundancy. Therefore, avoiding the recalculation of this angular redundancy can considerably reduce the computational load. Experimental results confirm that the proposed method can reduce the computational time for the statue head, rabbits, and car to 4.73%, 6.67%, and 10.4%, respectively, for uniform intensity, and to 56.34%, 57.9%, and 66.24%, respectively, for 256 levels intensity, when compared to conventional methods.

Three-dimensional Dynamic Display System Based on Integral Imaging

  • Jung, Sung-Yong;Min, Sung-Wook;Park, Jae-Hyeung;Lee, Byoung-Ho
    • Journal of Information Display
    • /
    • v.3 no.1
    • /
    • pp.22-26
    • /
    • 2002
  • Three-dimensional dynamic display system based on computer-generated integral imaging is discussed and its feasibility is verified via some basic experiments. Integrated images observed from different viewing points are seen to have full parallax and the animated 3D image was implemented successfully. Moreover, using large size Fresnel lens array was found to helps widen viewing angle and to make the system more practical.

Efficient Algorithms to Generate Elemental Images in Integral Imaging

  • Oh, Se-Chan;Hong, Ji-Soo;Park, Jae-Hyeung;Lee, Byoung-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.115-121
    • /
    • 2004
  • In this paper, we propose a new algorithm to generate elemental images in a computer generated integral imaging system. By comparing the computing time of this algorithm with that of the existing algorithm, we prove the efficiency of this algorithm. Two more algorithms considering the finite size of each pixel are also proposed. These algorithms enhance the quality of the integrated image while generating the elemental image as fast as the existing algorithm.

Double Encryption of Digital Hologram Based on Phase-Shifting Digital Holography and Digital Watermarking (위상 천이 디지털 홀로그래피 및 디지털 워터마킹 기반 디지털 홀로그램의 이중 암호화)

  • Kim, Cheol-Su
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.4
    • /
    • pp.1-9
    • /
    • 2017
  • In this Paper, Double Encryption Technology Based on Phase-Shifting Digital Holography and Digital Watermarking is Proposed. For the Purpose, we First Set a Logo Image to be used for Digital Watermark and Design a Binary Phase Computer Generated Hologram for this Logo Image using an Iterative Algorithm. And Random Generated Binary Phase Mask to be set as a Watermark and Key Image is Obtained through XOR Operation between Binary Phase CGH and Random Binary Phase Mask. Object Image is Phase Modulated to be a Constant Amplitude and Multiplied with Binary Phase Mask to Generate Object Wave. This Object Wave can be said to be a First Encrypted Image Having a Pattern Similar to the Noise Including the Watermark Information. Finally, we Interfere the First Encrypted Image with Reference Wave using 2-step PSDH and get a Good Visible Interference Pattern to be Called Second Encrypted Image. The Decryption Process is Proceeded with Fresnel Transform and Inverse Process of First Encryption Process After Appropriate Arithmetic Operation with Two Encrypted Images. The Proposed Encryption and Decryption Process is Confirmed through the Computer Simulations.

Computer Generated Hologram : Recoding and Reconstruction (컴퓨터 홀로그램의 생성 및 복원)

  • Yang, Yun-Mo;Oh, Byung Tae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.11a
    • /
    • pp.261-263
    • /
    • 2014
  • 최근 영화 <아바타>를 필두로 영화, 방송 등 영상매체에서 다양하게 3 차원 영상기술을 적용하고 있는 추세이다. 본 논문에서는 여러 가지 3 차원 영상 기술 중에서 가장 현실감이 높은 기술인 홀로그래피 (Holography)기술에 대하여 다루고자 한다. 우선 간략하게 홀로그래피 기술에 대하여 소개하고 홀로그램(Hologram)의 기록 및 복원 원리와 컴퓨터를 이용하여 홀로그래피 이미지를 만드는 컴퓨터 홀로그램 (Computer-generated hologram)에 대하여 기술하였으며, 범용 컴퓨터와 GPU(Graphics processing units)통해 컴퓨터 홀로그램 패턴을 기록 및 복원하는 실험을 진행해 보고, 시간 복잡도를 측정, 비교해 본다.

  • PDF

Parallel Synthesis Algorithm for Layer-based Computer-generated Holograms Using Sparse-field Localization

  • Park, Jongha;Hahn, Joonku;Kim, Hwi
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.672-679
    • /
    • 2021
  • We propose a high-speed layer-based algorithm for synthesizing computer-generated holograms (CGHs), featuring sparsity-based image segmentation and computational parallelism. The sparsity-based image segmentation of layer-based three-dimensional scenes leads to considerable improvement in the efficiency of CGH computation. The efficiency enhancement of the proposed algorithm is ascribed to the field localization of the fast Fourier transform (FFT), and the consequent reduction of FFT computational complexity.

Efficient Generation of Computer-generated Hologram Patterns Using Spatially Redundant Data on a 3D Object and the Novel Look-up Table Method

  • Kim, Seung-Cheol;Kim, Eun-Soo
    • Journal of Information Display
    • /
    • v.10 no.1
    • /
    • pp.6-15
    • /
    • 2009
  • In this paper, a new approach is proposed for the efficient generation of computer-generated holograms (CGHs) using the spatially redundant data on a 3D object and the novel look-up table (N-LUT) method. First, the pre-calculated N-point principle fringe patterns (PFPs) were calculated using the 1-point PFP of the N-LUT. Second, spatially redundant data on a 3D object were extracted and re-grouped into the N-point redundancy map using the run-length encoding (RLE) method. Then CGH patterns were generated using the spatial redundancy map and the N-LUT method. Finally, the generated hologram patterns were reconstructed. In this approach, the object points that were involved in the calculation of the CGH patterns were dramatically reduced, due to which the computational speed was increased. Some experiments with a test 3D object were carried out and the results were compared with those of conventional methods.

Fast Computation Algorithm of Fresnel Holograms Using Recursive Addition Method (반복 가산 기법을 이용한 Fresnel 홀로그램의 고속 계산 알고리듬)

  • Choi, Hyun-Jun;Seo, Young-Ho;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5C
    • /
    • pp.386-394
    • /
    • 2008
  • For digital holographic video system, it is important to generate digital hologram as fast as possible. This paper proposed a fixed-point method and fast generation method that can calculate the Fresnel hologram using operation of whole-coordinate recursive addition. To compute the digital hologram, 3D object is assumed to be a collection of depth-map point generated using a PC. Our algorithm can compute a phase on a hologram by recursive addition with fixed-point format at a high speed. When we operated this algorithm on a personal computer, we could maximally compute digital hologram about 70% faster than conventional method and about 30% faster than of [3]'s method.

Twin-Image Noise Effects in Optical scanning Holography

  • Doh, Kyu-Bong;Lee, Hwang-Suk
    • Journal of the Optical Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.48-53
    • /
    • 2000
  • In Optical Scanning Holography(OSH), 3-D holographic information of an object is generated by 2-D active optical scanning. The optical scanning beam can be a time-dependent Gaussian apodized Fresnel zone plate. In this technique, the holographic information manifests itself as an electric signal which can be sent to an electron-beam-addressed spatial light modulator for coherent image reconstruction. In this paper, we briefly review optical scanning holography and analyze the resolution achievable with the system. We also present mathmatical expressions of real and virtual images which are responsible for holographic image reconstruction. We then show the twin-image noise effect on the reconstruction in conjunction with the size of the Fresnel zone pattern through computer simulation.