• Title/Summary/Keyword: Computer aided diagnostics

Search Result 8, Processing Time 0.022 seconds

Analysis of characteristics for computer-aided diagnosis of breast ultrasound imaging (유방 초음파 영상의 컴퓨터 보조 진단을 위한 특성 분석)

  • Eum, Sang-hee;Nam, Jae-hyun;Ye, soo-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.307-310
    • /
    • 2021
  • In the recent years, studies using Computer-Aided Diagnostics(CAD) have been actively conducted, such as signal and image processing technology using breast ultrasound images, automatic image optimization technology, and automatic detection and classification of breast masses. As computer diagnostic technology is developed, it is expected that early detection of cancer will proceed accurately and quickly, reducing health insurance and test ice for patients, and eliminating anxiety about biopsy. In this paper, a quantitative analysis of tumors was conducted in ultrasound images using a gray level co-occurrence matrix(GLCM) to experiment with the possibility of use for computer assistance diagnosis.

  • PDF

The Role of Computer Simulation in Assessment and Treatment (근골격계 환자의 평가와 치료에 있어서 컴퓨터 시뮬레이션의 적용)

  • Shin, Sang-Hoon;Nam, Tong-Hyun
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.13 no.2
    • /
    • pp.140-148
    • /
    • 2009
  • The primary market of acupuncture treatment is concentrated on disorders of the musculoskeletal system. This study researches the clinical use of the musculoskeletal system evaluation with a computer simulation. Two fields are examined - patient evaluation and patient treatment. In the field of evaluation, the simulation is used to evaluates the prognosis of medical treatment. In the field of treatment, the simulation is used to decide the most suitable way to perform surgery using the quantitative evaluation about various cases of surgical results.

  • PDF

CAD Scheme To Detect Brain Tumour In MR Images using Active Contour Models and Tree Classifiers

  • Helen, R.;Kamaraj, N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.670-675
    • /
    • 2015
  • Medical imaging is one of the most powerful tools for gaining information about internal organs and tissues. It is a challenging task to develop sophisticated image analysis methods in order to improve the accuracy of diagnosis. The objective of this paper is to develop a Computer Aided Diagnostics (CAD) scheme for Brain Tumour detection from Magnetic Resonance Image (MRI) using active contour models and to investigate with several approaches for improving CAD performances. The problem in clinical medicine is the automatic detection of brain Tumours with maximum accuracy and in less time. This work involves the following steps: i) Segmentation performed by Fuzzy Clustering with Level Set Method (FCMLSM) and performance is compared with snake models based on Balloon force and Gradient Vector Force (GVF), Distance Regularized Level Set Method (DRLSE). ii) Feature extraction done by Shape and Texture based features. iii) Brain Tumour detection performed by various tree classifiers. Based on investigation FCMLSM is well suited segmentation method and Random Forest is the most optimum classifier for this problem. This method gives accuracy of 97% and with minimum classification error. The time taken to detect Tumour is approximately 2 mins for an examination (30 slices).

Development of the Software to test Pattern Diagnosis Ability in Oriental Medicine (변증 능력 평가 소프트웨어의 구현)

  • Kim, Ki-Wang;Chang, Jae-Soon
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.14 no.1
    • /
    • pp.70-78
    • /
    • 2010
  • Objectives : To qualify or enhance the diagnostic ability of students in Oriental Medicine, so called standardized patients are ideal modality, but because it's a man-based method, more convenient tools are required. Computer-based diagnostic ability test program gives effective way for the very purpose. So we made a pilot software evaluating Pattern Identification ability in Oriental Medicine. Methods and Materials : The pilot software was coded with Microsoft's EXCEL VBA. 87 names of Zheng (Symptom Pattern) and 674 names of symptom (including some signs) are adopted from the former standardization works conducted by Korean Institute of Oriental Medicine (KIOM) in 1996. Results : Compared with some manned modalities to test Pattern Identification ability, the test by this software shows superiority in convenience and objectivity. Conclusion : This software is world's first program to perform computer-based evaluation of Pattern Identification in Oriental Medicine, and it gives effective way to complement both written test and manned clinical performance test (CPX).

Full mouth rehabilitation with Implant-Guided Surgery and Fixed prosthesis (Implant-Guided Surgery를 이용한 고정성 임플란트 보철물의 전악 수복 증례)

  • Kim, Seong-Mo;Park, Jin-Hong;Ryu, Jae-Jun;Shin, Sang Wan;Lee, Jeong-Yol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.2
    • /
    • pp.126-133
    • /
    • 2018
  • The development of cone beam computerized tomography (CBCT) allows three-dimensional analysis of the patient's anatomy. The surgical guide is a combination of CBCT, computer-aided design/computer-aided manufacturing (CAD/CAM) and implant diagnostics software, which allows well planned prostheses design and ideal implant placement. Guided surgery minimizes possible anatomical damage and allows for more reproducible treatment planning. In this case, the operation time was shortened by using a surgical guide for multiple implants placement in a fully edentulous patient. Immediate loading were performed more easily using preliminary preparation of provisional prosthesis. The patient was satisfied with improved esthetics and chewing function.

A Study on Combustion Visualizations and Radical Characteristics using Optically Accesible Engine (가시화엔진을 이용한 연소 및 라디칼 특성에 관한 연구)

  • Choi, Su-Jin;Chang, Young-June;Jeon, Chung-Hwan
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.1
    • /
    • pp.39-47
    • /
    • 1999
  • A combustion flame visualization system, which is used as an engine diagnostics tool, was developed in order to understand the combustion reaction mechanism in the development stage for S.I. engines. The measurement system consists of an I-CCD camera and a computer-aided image processing system. By using optically accessible engine system, the flame structure was analyzed from the acquired graylevel image and the direction of flame propagation (shape of flame) has been measured to understand combustion phenomena. And combustion radical which involves combustion information were measured. As a result, strong relation between combustion radicals intensity ratio and air excess ratio was found.

  • PDF

Top 10 Key Standardization Trends and Perspectives on Artificial Intelligence in Medicine (의료 인공지능 10대 표준화 동향 및 전망)

  • Jeon, J.H.;Lee, K.C.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.2
    • /
    • pp.1-16
    • /
    • 2020
  • "Artificial Intelligence+" is a key strategic direction that has garnered the attention of several global medical device manufacturers and internet companies. Large hospitals are actively involved in different types of medical AI research and cooperation projects. Medical AI is expected to create numerous opportunities and advancements in areas such as medical imaging, computer aided diagnostics and clinical decision support, new drug development, personal healthcare, pathology analysis, and genetic disease prediction. On the contrary, some studies on the limitations and problems in current conditions such as lack of clinical validation, difficulty in performance comparison, lack of interoperability, adversarial attacks, and computational manipulations are being published. Overall, the medical AI field is in a paradigm shift. Regarding international standardization, the work on the top 10 standardization issues is witnessing rapid progress and the competition for standard development has become fierce.

Biological effects of zinc oxide nanoparticles on inflammation

  • Kim, Min-Ho
    • CELLMED
    • /
    • v.6 no.4
    • /
    • pp.23.1-23.6
    • /
    • 2016
  • With the rapid developments in nanotechnology, an increasing number of nanomaterials have been applied in various aspects of our lives. Recently, pharmaceutical nanotechnology with numerous advantages has growingly attracted the attention of many researchers. Zinc oxide nanoparticles (ZnO-NPs) are nanomaterials that are widely used in many fields including diagnostics, therapeutics, drug-delivery systems, electronics, cosmetics, sunscreens, coatings, ceramic products, paints, and food additives, due to their magnetic, catalytic, semiconducting, anti-cancer, anti-bacterial, anti-inflammatory, ultraviolet-protective, and binding properties. The present review focused on the recent research works concerning role of ZnO-NP on inflammation. Several studies have reported that ZnO-NP induces inflammatory reaction through the generation of reactive oxygen species by oxidative stress and production of inflammatory cytokines by activation of nuclear factor-${\kappa}B$ ($NF-{\kappa}B$). Meanwhile, other researchers reported that ZnO-NP exhibits an anti-inflammatory effect by inhibiting the up-regulation of inflammatory cytokines and the activation of $NF-{\kappa}B$, caspase-1, $I{\kappa}B$ $kinase{\beta}$, receptor interacting protein2, and extracellular signal-regulated kinase. Previous studies reported that size and shape of nanoparticles, surfactants used for nanoparticles protection, medium, and experimental conditions can also affect cellular signal pathway. This review indicated that the anti-inflammatory effectiveness of ZnO-NP was determined by the nanoparticle size as well as various experimental conditions. Therefore, the author suggests that pharmaceutical therapy with the ZnO-NP is one of the possible strategies to overcome the inflammatory reactions. However, further studies should be performed to maximize the anti-inflammatory effect of ZnO-NP to apply as a potential agent in biomedical applications.