실시간 교차로의 대기행렬길이 검지는 지능형교통체계의 중요부분인 교통관제를 위해서 매우 중요하다. 특히 교통정보수집을 위한 영상기반 기술은 전통적인 루프검지기 또는 기타 타 검지기에 비하여 내재된 여러 이점 때문에 많은 연구가 진행되어 왔다. 그러나 현장 적용시 흔히 발생하는 영상에서의 잡음 및 주변 물체로부터 투영되는 음영 등에 의해 나타나는 차량의 오검지율을 줄이고 수집되는 교통정보의 신뢰도를 높이기 위해서는 보다 효과적인 알고리즘개발이 요구된다. 본 연구에서는 영상처리를 이용한 대기행렬길이 검지를 위한 알고리즘을 제시하였다. 실시간 데이터 수집 및 분석 그리고 패턴분석에 우수한 것으로 알려진 신경망 모형을 이용하였으며, 특히 시스템 신뢰성을 높이기 위하여 퍼지이론이 접목된 퍼지 뉴런모델인 Fuzzy ARTMAP을 모형에 도입하였다. 실험결과 본 연구에서 제시한 대기행렬 측정 방법은 매우 우수한 검지 능력을 보였으며, 대기행렬 검지뿐만 아니라 신뢰성 높은 차량검지 및 차종분류를 위해서도 활용할 수 있을 것으로 기대된다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제8권5호
/
pp.1676-1689
/
2014
At present, the Content-Based Image Retrieval (CBIR) system has become a hot research topic in the computer vision field. In the CBIR system, the accurate extractions of low-level features can reduce the gaps between high-level semantics and improve retrieval precision. This paper puts forward a new retrieval method aiming at the problems of high computational complexities and low precision of global feature extraction algorithms. The establishment of the new retrieval method is on the basis of the SIFT and Harris (APISH) algorithm, and the salient region of interest points (SRIP) algorithm to satisfy users' interests in the specific targets of images. In the first place, by using the IPDSH and SRIP algorithms, we tested stable interest points and found salient regions. The interest points in the salient region were named as salient interest points. Secondary, we extracted the pseudo-Zernike moments of the salient interest points' neighborhood as the feature vectors. Finally, we calculated the similarities between query and database images. Finally, We conducted this experiment based on the Caltech-101 database. By studying the experiment, the results have shown that this new retrieval method can decrease the interference of unstable interest points in the regions of non-interests and improve the ratios of accuracy and recall.
In this paper, we proposed a method for eliminating aiming error of unguided anti-tank rocket using improved target tracking. Since predicted fire is necessary to hit moving targets with unguided rockets, a method was proposed to estimate the position and velocity of target using fire control system. However, such a method has a problem that the hit rate may be lowered due to the aiming error of the shooter. In order to solve this problem, we used an image-based target tracking method to correct error caused by the shooter. We also proposed a robust tracking method based on TLD(Tracking Learning Detection) considering characteristics of the FCS(Fire Control System) devices. To verify the performance of our proposed algorithm, we measured the target velocity using GPS and compared it with our estimation. It is proved that our method is robust to shooter's aiming error.
사용자의 시선 위치를 파악하는 연구는 많은 응용분야를 가지고 지난 몇년간 눈부시게 발전되어 왔다. 기존의 대부분 연구에서는 영상 처리 방법만에 의존하여 시선 위치 추적 연구를 수행하였기 때문에 처리 속도도 늦고 많은 사용 제약을 가지는 문제점이 있었다. 이 논문에서는 적외선 조명이 부착된 단일 카메라를 이용한 컴퓨터 비전 시스템으로 시선 위치 추적 연구를 수행하였다. 사용자의 시선 위치를 파악하기 위해서는 얼굴 특징점의 위치를 추적해야하는데, 이를 위하여 이 논문에서는 적의선 기반 카메라와 SVM(Support Vector Machine) 알고리즘을 사용하였다. 사용자가 모니터상의 임의의 지점을 쳐다볼 때 얼굴 특징점의 3차원 위치는 3차원 움직임량 추정(3D motion estimation) 및 아핀 변환(affine transformation)에 의해 계산되어 질 수 있다. 얼굴 특징점의 변화된 3차원 위치가 계산되면. 이로부터 3개 이상의 얼굴 특징점으로부터 생성되는 얼굴 평면 및 얼굴 평면의 법선 벡터가 구해지게 되며, 이러한 법선 백터가 모니터 스크린과 만나는 위치가 사용자의 시선위치가 된다. 또한. 이 논문에서는 보다 정확한 시선 위치를 파악하기 위하여 사용자의 눈동자 움직임을 추적하였으며 이를 위하여 신경망(다층 퍼셉트론)을 사용하였다. 실험 결과, 얼굴 및 눈동자 움직임에 의한 모니터상의 시선 위치 정확도는 약 4.2cm의 최소 자승 에러성능을 나타냈다.
Cow image processing technique would be useful not only for recognizing an individual but also for establishing the image database and analyzing the shape of cows. A cow (Holstein) has usually the unique speckle pattern. In this study, the individual recognition of cow was carried out using the speckle pattern and the content-based image retrieval technique. Sixty cow images of 16 heads were captured under outdoor illumination, which were complicated images due to shadow, obstacles and walking posture of cow. Sixteen images were selected as the reference image for each cow and 44 query images were used for evaluating the efficiency of individual recognition by matching to each reference image. Run-lengths and positions of runs across speckle area were calculated from 40 horizontal line profiles for ROI (region of interest) in a cow body image after 3 passes of 5$\times$5 median filtering. A similarity measure for recognizing cow individuals was calculated using Euclidean distance of normalized G-frame histogram (GH). normalized speckle run-length (BRL), normalized x and y positions (BRX, BRY) of speckle runs. This study evaluated the efficiency of individual recognition of cow using Recall(Success rate) and AVRR(Average rank of relevant images). Success rate of individual recognition was 100% when GH, BRL, BRX and BRY were used as image query indices. It was concluded that the histogram as global property and the information of speckle runs as local properties were good image features for individual recognition and the developed system of individual recognition was reliable.
In the past two decades, structural health monitoring (SHM) systems have been widely installed on various civil infrastructures for the tracking of the state of their structural health and the detection of structural damage or abnormality, through long-term monitoring of environmental conditions as well as structural loadings and responses. In an SHM system, there are plenty of sensors to acquire a huge number of monitoring data, which can factually reflect the in-service condition of the target structure. In order to bridge the gap between SHM and structural maintenance and management (SMM), it is necessary to employ advanced data processing methods to convert the original multi-source heterogeneous field monitoring data into different types of specific physical indicators in order to make effective decisions regarding inspection, maintenance and management. Conventional approaches to data analysis are confronted with challenges from environmental noise, the volume of measurement data, the complexity of computation, etc., and they severely constrain the pervasive application of SHM technology. In recent years, with the rapid progress of computing hardware and image acquisition equipment, the deep learning-based data processing approach offers a new channel for excavating the massive data from an SHM system, towards autonomous, accurate and robust processing of the monitoring data. Many researchers from the SHM community have made efforts to explore the applications of deep learning-based approaches for structural damage detection and structural condition assessment. This paper gives a review on the deep learning-based SHM of civil infrastructures with the main content, including a brief summary of the history of the development of deep learning, the applications of deep learning-based data processing approaches in the SHM of many kinds of civil infrastructures, and the key challenges and future trends of the strategy of deep learning-based SHM.
말벌 종은 모양이 매우 유사하기 때문에 비전문가가 분류하기 어렵고, 객체의 크기가 작고 빠르게 움직이기 때문에 실시간으로 탐지하여 종을 분류하는 것은 더욱 어렵다. 본 논문에서는 바운딩 박스를 이용한 딥러닝 알고리즘을 기반으로 말벌 종을 실시간으로 분류하는 시스템을 개발하였다. 훈련 영상의 레이블링 작업 시 바운딩 박스 안에 포함되는 배경 영역을 최소화하기 위하여 말벌의 머리와 몸통 부분만을 선택하는 방법을 제안한다. 또한 실시간으로 말벌을 탐지하고 그 종을 분류할 수 있는 최선의 알고리즘을 찾기 위하여 기존의 바운딩 박스 기반 객체 인식 알고리즘들을 실험을 통하여 비교한다. 실험 결과 컨볼루션 레이어의 활성함수로 mish 함수를 적용하고, 객체 검출 블록 전에 공간집중모듈(Spatial Attention Module, SAM)을 적용한 YOLOv4 모델을 사용하여 말벌 영상을 테스트한 경우 평균 97.89%의 정밀도(Precision)와 98.69%의 재현율(Recall)을 나타내었다.
최근 리테일 산업계에서는 COVID-19 등의 다양한 외부 환경 위협으로부터의 대응과 AI 기술을 활용한 경쟁력을 갖추기 위한 정보기술 융합 및 활용 요구가 증가하고 있으나 리테일 산업에서의 데이터를 활용하기 위한 연구와 응용 서비스의 활용사례가 매우 부족하다. 본 연구는 CCTV 영상 데이터 기반의 AI 활용 응용 서비스 활용 사례연구로 리테일 공간에서의 CCTV 영상 데이터 수집, 객체 탐지 및 추적 AI 모델 활용, 실시간 추적된 객체와 트래킹 데이터를 저장하기 위한 시계열 데이터베이스 활용, 시계열 데이터를 활용한 모니터링, 리테일 공간의 혼잡도와 관심도를 분석하기 위한 히트맵, 리테일 공간에서의 실시간 상황 모니터링, COVID-19와 같은 사회적 위협으로부터의 접촉자 분석과 추적을 위한 사회적 거리 두기 현황, 비인가자의 보안 구역의 접근 모니터링 애플리케이션을 설계하고 이를 실제 구현하여 리테일 공간에서의 CCTV 영상 데이터를 활용한 애플리케이션 설계를 통해 CCTV 영상 데이터 기반의 AI 융합 응용 서비스 활용 모델을 제시하였으며, 실제 구현을 통해 설계된 활용 모델을 검증하였다.
2차원 영상 센서를 이용하여 조종자의 3차원 손 위치를 인식하고 이를 기반으로 원격으로 6축 로봇팔을 제어하는 시스템을 개발하였다. 시스템은 물체의 영상정보를 인식하는 2차원 영상 센서 모듈, 영상정보를 로봇팔 제어 명령어로 전환하는 알고리즘, 자체 제작한 6축 로봇팔 및 제어 시스템으로 구성된다. 영상 센서는 조종자가 착용한 장갑의 모양과 색을 인지하여 크기 및 위치정보를 출력하게 되며, 본 연구에서는 이러한 위치 및 물체를 둘러싼 크기 정보를 이용하여 로봇 선단의 속도를 제어한다. 연구 방법의 검증은 자체 제작된 6축 로봇으로 실행하였으며, 조종자의 손동작 조종에 의한 실험을 통해 제안한 영상정보 제어 및 로봇 선단 제어 방법이 성공적으로 동작함을 확인하였다.
인공지능 기술의 발전으로 산업 4.0시대가 열렸고 축산업에서도 ICT 기술이 접목된 스마트 농장의 구현이 큰 관심을 받고 있다. 그중에서도 컴퓨터 비전 기반 인공지능 기술을 접목한 축산물 및 축산 가공품의 품질 관리 기술은 스마트 축산의 핵심 기술에 해당한다. 그러나 인공지능 모형 훈련을 위한 축산물 이미지 데이터 수의 부족과 특정 범주(class)에 대한 데이터 불균형은 관련 연구 및 기술 개발에 큰 장해물이 되고 있다. 이러한 문제들을 해결하기 위해, 본 연구에서는 오버샘플링과 적대적 사례 생성기법의 활용을 제안한다. 제안되는 방법은 성공적인 불량 탐지 (Defect detection) 관점을 기반으로 하며, 이는 부족한 데이터 레이블을 효과적으로 활용하는데 필요한 방법이다. 최종적으로 실험을 통해 제안된 방법의 타당성을 확인하고 활용 전략을 검토한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.