• Title/Summary/Keyword: Computer Training

Search Result 2,472, Processing Time 0.027 seconds

A Study on Elderly Services by Elderly in Public Libraries in A Post-aged Society: Focusing on the Busan Metropolitan City Public Library (초고령사회 공공도서관 노인이용자를 위한 '노노 서비스(老老 service)' 방안 연구 - 부산광역시 공공도서관을 중심으로 -)

  • Myung Sook, Kim
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.34 no.1
    • /
    • pp.75-96
    • /
    • 2023
  • The purpose of this study is to prepare and present a plan for the elderly service, in which the elderly become service providers and beneficiaries for the elderly who have emerged as the main library users in the face of a post-aged society. As a result of a survey of 119 elderly users of public libraries in the Busan area and an interview with a focus group of librarians at G Library, it was confirmed that the elderly service was needed. The most necessary services in terms of the beneficiaries of the Elderly Services by Elderly were surveyed in the order of computer information search help service, library usage guide service, book search method guide service, and recommended or popular book guide service. In terms of 'Elderly Services by Elderly' providers, the willingness to participate was the highest among those in their 60s, and the preferred method of participation was paid volunteer work three times a week, within four hours a day. Accordingly, it was analyzed that participants were recruited in connection with the social contribution activities of the government employment program for the elderly and prior training was necessary. In addition, the need for the creation of a community space for the elderly and the participation of retired librarians was raised.

Implementation of a Transition Rule Model for Automation of Tracking Exercise Progression (운동 과정 추적의 자동화를 위한 전이 규칙 모델의 구현)

  • Chung, Daniel;Ko, Ilju
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.5
    • /
    • pp.157-166
    • /
    • 2022
  • Exercise is necessary for a healthy life, but it is recommended that it be conducted in a non-face-to-face environment in the context of an epidemic such as COVID-19. However, in the existing non-face-to-face exercise content, it is possible to recognize exercise movements, but the process of interpreting and providing feedback information is not automated. Therefore, in this paper, to solve this problem, we propose a method of creating a formalized rule to track the contents of exercise and the motions that constitute it. To make such a rule, first make a rule for the overall exercise content, and then create a tracking rule for the motions that make up the exercise. A motion tracking rule can be created by dividing the motion into steps and defining a key frame pose that divides the steps, and creating a transition rule between states and states represented by the key frame poses. The rules created in this way are premised on the use of posture and motion recognition technology using motion capture equipment, and are used for logical development for automation of application of these technologies. By using the rules proposed in this paper, not only recognizing the motions appearing in the exercise process, but also automating the interpretation of the entire motion process, making it possible to produce more advanced contents such as an artificial intelligence training system. Accordingly, the quality of feedback on the exercise process can be improved.

A study on deep neural speech enhancement in drone noise environment (드론 소음 환경에서 심층 신경망 기반 음성 향상 기법 적용에 관한 연구)

  • Kim, Jimin;Jung, Jaehee;Yeo, Chaneun;Kim, Wooil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.3
    • /
    • pp.342-350
    • /
    • 2022
  • In this paper, actual drone noise samples are collected for speech processing in disaster environments to build noise-corrupted speech database, and speech enhancement performance is evaluated by applying spectrum subtraction and mask-based speech enhancement techniques. To improve the performance of VoiceFilter (VF), an existing deep neural network-based speech enhancement model, we apply the Self-Attention operation and use the estimated noise information as input to the Attention model. Compared to existing VF model techniques, the experimental results show 3.77%, 1.66% and 0.32% improvements for Source to Distortion Ratio (SDR), Perceptual Evaluation of Speech Quality (PESQ), and Short-Time Objective Intelligence (STOI), respectively. When trained with a 75% mix of speech data with drone sounds collected from the Internet, the relative performance drop rates for SDR, PESQ, and STOI are 3.18%, 2.79% and 0.96%, respectively, compared to using only actual drone noise. This confirms that data similar to real data can be collected and effectively used for model training for speech enhancement in environments where real data is difficult to obtain.

Deep Learning Acoustic Non-line-of-Sight Object Detection (음향신호를 활용한 딥러닝 기반 비가시 영역 객체 탐지)

  • Ui-Hyeon Shin;Kwangsu Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.233-247
    • /
    • 2023
  • Recently, research on detecting objects in hidden spaces beyond the direct line-of-sight of observers has received attention. Most studies use optical equipment that utilizes the directional of light, but sound that has both diffraction and directional is also suitable for non-line-of-sight(NLOS) research. In this paper, we propose a novel method of detecting objects in non-line-of-sight (NLOS) areas using acoustic signals in the audible frequency range. We developed a deep learning model that extracts information from the NLOS area by inputting only acoustic signals and predicts the properties and location of hidden objects. Additionally, for the training and evaluation of the deep learning model, we collected data by varying the signal transmission and reception location for a total of 11 objects. We show that the deep learning model demonstrates outstanding performance in detecting objects in the NLOS area using acoustic signals. We observed that the performance decreases as the distance between the signal collection location and the reflecting wall, and the performance improves through the combination of signals collected from multiple locations. Finally, we propose the optimal conditions for detecting objects in the NLOS area using acoustic signals.

A Methodology for Making Military Surveillance System to be Intelligent Applied by AI Model (AI모델을 적용한 군 경계체계 지능화 방안)

  • Changhee Han;Halim Ku;Pokki Park
    • Journal of Internet Computing and Services
    • /
    • v.24 no.4
    • /
    • pp.57-64
    • /
    • 2023
  • The ROK military faces a significant challenge in its vigilance mission due to demographic problems, particularly the current aging population and population cliff. This study demonstrates the crucial role of the 4th industrial revolution and its core artificial intelligence algorithm in maximizing work efficiency within the Command&Control room by mechanizing simple tasks. To achieve a fully developed military surveillance system, we have chosen multi-object tracking (MOT) technology as an essential artificial intelligence component, aligning with our goal of an intelligent and automated surveillance system. Additionally, we have prioritized data visualization and user interface to ensure system accessibility and efficiency. These complementary elements come together to form a cohesive software application. The CCTV video data for this study was collected from the CCTV cameras installed at the 1st and 2nd main gates of the 00 unit, with the cooperation by Command&Control room. Experimental results indicate that an intelligent and automated surveillance system enables the delivery of more information to the operators in the room. However, it is important to acknowledge the limitations of the developed software system in this study. By highlighting these limitations, we can present the future direction for the development of military surveillance systems.

A Comparison of Image Classification System for Building Waste Data based on Deep Learning (딥러닝기반 건축폐기물 이미지 분류 시스템 비교)

  • Jae-Kyung Sung;Mincheol Yang;Kyungnam Moon;Yong-Guk Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.3
    • /
    • pp.199-206
    • /
    • 2023
  • This study utilizes deep learning algorithms to automatically classify construction waste into three categories: wood waste, plastic waste, and concrete waste. Two models, VGG-16 and ViT (Vision Transformer), which are convolutional neural network image classification algorithms and NLP-based models that sequence images, respectively, were compared for their performance in classifying construction waste. Image data for construction waste was collected by crawling images from search engines worldwide, and 3,000 images, with 1,000 images for each category, were obtained by excluding images that were difficult to distinguish with the naked eye or that were duplicated and would interfere with the experiment. In addition, to improve the accuracy of the models, data augmentation was performed during training with a total of 30,000 images. Despite the unstructured nature of the collected image data, the experimental results showed that VGG-16 achieved an accuracy of 91.5%, and ViT achieved an accuracy of 92.7%. This seems to suggest the possibility of practical application in actual construction waste data management work. If object detection techniques or semantic segmentation techniques are utilized based on this study, more precise classification will be possible even within a single image, resulting in more accurate waste classification

Improving the Performance of Deep-Learning-Based Ground-Penetrating Radar Cavity Detection Model using Data Augmentation and Ensemble Techniques (데이터 증강 및 앙상블 기법을 이용한 딥러닝 기반 GPR 공동 탐지 모델 성능 향상 연구)

  • Yonguk Choi;Sangjin Seo;Hangilro Jang;Daeung Yoon
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.4
    • /
    • pp.211-228
    • /
    • 2023
  • Ground-penetrating radar (GPR) surveys are commonly used to monitor embankments, which is a nondestructive geophysical method. The results of GPR surveys can be complex, depending on the situation, and data processing and interpretation are subject to expert experiences, potentially resulting in false detection. Additionally, this process is time-intensive. Consequently, various studies have been undertaken to detect cavities in GPR survey data using deep learning methods. Deep-learning-based approaches require abundant data for training, but GPR field survey data are often scarce due to cost and other factors constaining field studies. Therefore, in this study, a deep- learning-based model was developed for embankment GPR survey cavity detection using data augmentation strategies. A dataset was constructed by collecting survey data over several years from the same embankment. A you look only once (YOLO) model, commonly used in computer vision for object detection, was employed for this purpose. By comparing and analyzing various strategies, the optimal data augmentation approach was determined. After initial model development, a stepwise process was employed, including box clustering, transfer learning, self-ensemble, and model ensemble techniques, to enhance the final model performance. The model performance was evaluated, with the results demonstrating its effectiveness in detecting cavities in embankment GPR survey data.

Applying deep learning based super-resolution technique for high-resolution urban flood analysis (고해상도 도시 침수 해석을 위한 딥러닝 기반 초해상화 기술 적용)

  • Choi, Hyeonjin;Lee, Songhee;Woo, Hyuna;Kim, Minyoung;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.10
    • /
    • pp.641-653
    • /
    • 2023
  • As climate change and urbanization are causing unprecedented natural disasters in urban areas, it is crucial to have urban flood predictions with high fidelity and accuracy. However, conventional physically- and deep learning-based urban flood modeling methods have limitations that require a lot of computer resources or data for high-resolution flooding analysis. In this study, we propose and implement a method for improving the spatial resolution of urban flood analysis using a deep learning based super-resolution technique. The proposed approach converts low-resolution flood maps by physically based modeling into the high-resolution using a super-resolution deep learning model trained by high-resolution modeling data. When applied to two cases of retrospective flood analysis at part of City of Portland, Oregon, U.S., the results of the 4-m resolution physical simulation were successfully converted into 1-m resolution flood maps through super-resolution. High structural similarity between the super-solution image and the high-resolution original was found. The results show promising image quality loss within an acceptable limit of 22.80 dB (PSNR) and 0.73 (SSIM). The proposed super-resolution method can provide efficient model training with a limited number of flood scenarios, significantly reducing data acquisition efforts and computational costs.

Mean Teacher Learning Structure Optimization for Semantic Segmentation of Crack Detection (균열 탐지의 의미론적 분할을 위한 Mean Teacher 학습 구조 최적화 )

  • Seungbo Shim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.113-119
    • /
    • 2023
  • Most infrastructure structures were completed during periods of economic growth. The number of infrastructure structures reaching their lifespan is increasing, and the proportion of old structures is gradually increasing. The functions and performance of these structures at the time of design may deteriorate and may even lead to safety accidents. To prevent this repercussion, accurate inspection and appropriate repair are requisite. To this end, demand is increasing for computer vision and deep learning technology to accurately detect even minute cracks. However, deep learning algorithms require a large number of training data. In particular, label images indicating the location of cracks in the image are required. To secure a large number of those label images, a lot of labor and time are consumed. To reduce these costs as well as increase detection accuracy, this study proposed a learning structure based on mean teacher method. This learning structure was trained on a dataset of 900 labeled image dataset and 3000 unlabeled image dataset. The crack detection network model was evaluated on over 300 labeled image dataset, and the detection accuracy recorded a mean intersection over union of 89.23% and an F1 score of 89.12%. Through this experiment, it was confirmed that detection performance was improved compared to supervised learning. It is expected that this proposed method will be used in the future to reduce the cost required to secure label images.

Predicting the splitting tensile strength of manufactured-sand concrete containing stone nano-powder through advanced machine learning techniques

  • Manish Kewalramani;Hanan Samadi;Adil Hussein Mohammed;Arsalan Mahmoodzadeh;Ibrahim Albaijan;Hawkar Hashim Ibrahim;Saleh Alsulamy
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.375-394
    • /
    • 2024
  • The extensive utilization of concrete has given rise to environmental concerns, specifically concerning the depletion of river sand. To address this issue, waste deposits can provide manufactured-sand (MS) as a substitute for river sand. The objective of this study is to explore the application of machine learning techniques to facilitate the production of manufactured-sand concrete (MSC) containing stone nano-powder through estimating the splitting tensile strength (STS) containing compressive strength of cement (CSC), tensile strength of cement (TSC), curing age (CA), maximum size of the crushed stone (Dmax), stone nano-powder content (SNC), fineness modulus of sand (FMS), water to cement ratio (W/C), sand ratio (SR), and slump (S). To achieve this goal, a total of 310 data points, encompassing nine influential factors affecting the mechanical properties of MSC, are collected through laboratory tests. Subsequently, the gathered dataset is divided into two subsets, one for training and the other for testing; comprising 90% (280 samples) and 10% (30 samples) of the total data, respectively. By employing the generated dataset, novel models were developed for evaluating the STS of MSC in relation to the nine input features. The analysis results revealed significant correlations between the CSC and the curing age CA with STS. Moreover, when delving into sensitivity analysis using an empirical model, it becomes apparent that parameters such as the FMS and the W/C exert minimal influence on the STS. We employed various loss functions to gauge the effectiveness and precision of our methodologies. Impressively, the outcomes of our devised models exhibited commendable accuracy and reliability, with all models displaying an R-squared value surpassing 0.75 and loss function values approaching insignificance. To further refine the estimation of STS for engineering endeavors, we also developed a user-friendly graphical interface for our machine learning models. These proposed models present a practical alternative to laborious, expensive, and complex laboratory techniques, thereby simplifying the production of mortar specimens.