• Title/Summary/Keyword: Computer Safety

Search Result 2,335, Processing Time 0.032 seconds

Implementation of a Virtual Training System on Gas Safety

  • Wouseok Jou;Tae-sik Lim;Kyong-sik Kang;Tae-ok Kim
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2000.11a
    • /
    • pp.1-5
    • /
    • 2000
  • With the advent of the internet era, web-based virtual training system is gaining its importance in recent years. Because of the fact that the training can take place in any place and at any time, the virtual system is now replacing many of the conventional off-line classes. Hardware environments such as communication bandwidth and computer performance gets fast enough to accommodate the virtual education. Based on the observations on current virtual training system, this paper proposes three critical design rules required when developing a new virtual training system: i) With conceptual mapping, the menu hierarchy can be organized in a clear-cut manner, ii) Extensive use of multimedia tools can help students keep their attention to the lecture materials, and iii) Provision of interaction mechanisms helps students to gain their identity and motivation.

  • PDF

User Density Estimation System at Closed Space using High Frequency and Smart device

  • Chung, Myoungbeom
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.11
    • /
    • pp.49-55
    • /
    • 2017
  • Recently, for safety of people, there are proposed so many technologies which detect density of people at the specific place or space. The representative technology for crowd density estimation was using image analysis method from CCTV images. However, this method had a weakness which could not be used and which's accuracy was lower at the dark or smog space. Therefore, in this paper, to solve this problem, we proposed a user density estimation system at closed space using high frequency and smart device. The system send inaudible high frequencies to smart devices and it count the smart devices which detect the high frequencies on the space. We tested real-time user density with the proposed system and ten smart devices to evaluate performance. According to the testing results, we confirmed that the proposed system's accuracy was 95% and it was very useful. Thus, because the proposed system could estimate about user density at specific space exactly, it could be useful technology for safety of people and measurement of space use state at indoor space.

Design and Implementation of Software Vulnerability Analysis Algorithm through Static Data Access Analysis

  • Lim, Hyun-il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.8
    • /
    • pp.69-75
    • /
    • 2015
  • Nowadays, software plays various roles in applications in wide areas. However, the security problems caused by software vulnerabilities increase. So, it is necessary to improve software security and safety in software execution. In this paper, we propose an approach to improve the safety of software execution by managing information used in software through static data access analysis. The approach can detect the exposures of secure data in software execution by analyzing information property and flows through static data access analysis. In this paper, we implemented and experimented the proposed approach with a base language, and verify that the proposed approach can effectively detect the exposures of secure information. The proposed approach can be applied in several areas for improving software safety by analysing vulnerabilities from information flows in software execution.

A review of missing video frame estimation techniques for their suitability analysis in NPP

  • Chaubey, Mrityunjay;Singh, Lalit Kumar;Gupta, Manjari
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1153-1160
    • /
    • 2022
  • The application of video processing techniques are useful for the safety of nuclear power plants by tracking the people online on video to estimate the dose received by staff during work in nuclear plants. Nuclear reactors remotely visually controlled to evaluate the plant's condition using video processing techniques. Internal reactor components should be frequently inspected but in current scenario however involves human technicians, who review inspection videos and identify the costly, time-consuming and subjective cracks on metallic surfaces of underwater components. In case, if any frame of the inspection video degraded/corrupted/missed due to noise or any other factor, then it may cause serious safety issue. The problem of missing/degraded/corrupted video frame estimation is a challenging problem till date. In this paper a systematic literature review on video processing techniques is carried out, to perform their suitability analysis for NPP applications. The limitation of existing approaches are also identified along with a roadmap to overcome these limitations.

Performance measurement of safety-critical systems based on ordinary differential equations and Petri nets: A case study of nuclear power plant

  • Nand Kumar Jyotish;Lalit Kumar Singh;Chiranjeev Kumar
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.861-869
    • /
    • 2023
  • This article proposes a novel approach to measure the performance of Safety-Critical Systems (SCS). Such systems contain multiple processing nodes that communicate with each other is modeled by a Petri nets (PN). The paper uses the PN for the performance evaluation of SCS. A set of ordinary differential equations (ODEs) is derived from the Petri net model that represent the state of the system, and the solutions can be used to measure the system's performance. The proposed method can avoid the state space explosion problem and also introduces new metrics of performance, along with their measurement: deadlock, liveness, stability, boundedness, and steady state. The proposed technique is applied to Shutdown System (SDS) of Nuclear Power Plant (NPP). We obtained 99.887% accuracy of performance measurement, which proves the effectiveness of our approach.

Understanding The Role of Smart Pointers in the Rust Memory (Rust 언어 메모리 안전 모델에서 스마트 포인터의 역할에 대한 연구)

  • Martin Kayondo;Inyoung Bang;Yunheung Paek
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.345-347
    • /
    • 2023
  • Rust has gained popularity as a memory safe systems programming language. At the center of its memory safety is a strict memory ownership model with stringent rules enforced by the compiler. This paper aims to shed light on this memory safety model and the role smart pointers play towards its success. We study specific smart pointers, their purposes and contribution to Rust's memory safety. We further explore weaknesses of these smart pointers and their APIs, and provide scenarios under which they may lead to memory vulnerabilities in Rust programs.

Worker's Behavior Monitoring using Deep Learning (딥러닝을 이용한 작업자 행동 모니터링)

  • Lee, Se-hoon;Kim, Kim-woo;Yu, Jin-hwan;Tak, Jin-hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.57-58
    • /
    • 2019
  • 본 논문에서는 앞서 진행한 연구들과 딥러닝을 이용한 고소작업자 행동 모니터링 논문에 이어 작업자 위험 행동분류 시스템을 개선할 수 있는 연구 결과를 비교, 설명한다. 이번 연구에서는 작업자의 행동에 따른 고도계 센서의 데이터를 추가로 수집하여 작업자의 더 다양한 행동을 분류하고 위험 행동 패턴 분석을 위한 방향을 제시한다.

  • PDF

Research on the Effect of Korea Information Center of Agricultural Safety and Health (KICASH) (농업인 건강안전정보센터의 활용 효과에 관한 연구)

  • Lee, Kyung Suk;Kim, Hyo Cher;Chae, Hye Seon;Cho, Yong Ho;Min, Kyung Doo
    • The Korean Journal of Community Living Science
    • /
    • v.23 no.4
    • /
    • pp.441-446
    • /
    • 2012
  • The aim of this study was to evaluate the effect of application of the contents of Korean Information Center of Agricultura Safety and Health (KICASH) with 80 subjects(male: 60, female: 20) from different provinces nationwide in 2011. Subjects were classified according to their sex and familiarity of computer and then categorized into 3 groups with poor, medium and good by self-evaluation. The test for the effectiveness and satisfaction about KICASH was conducted with likert scale from very bad (1point) to very good (5point). Subjects generally tended to give 4 points to contents. And they gave support to KICASH in that they showed about 4 point with intention of application of KICASH for safety and health irrespective of familiarity of computer. However, as they received the information passively, it will be needed to develop more interesting and various contents which they could get more helpful information for their health and safety actively using two-way information communication system in future. Therefore the study can helps improve farmer's health and safety through developing advanced health and safety information system.

Development of Backward Safety Analysis Tool for CPN Models (CPN 모델의 역방향 안전성 분석 도구 개발)

  • Lee, U-Jin;Chae, Heung-Seok;Cha, Seong-Deok;Lee, Jang-Su;Gwon, Yong-Rae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.5 no.4
    • /
    • pp.457-466
    • /
    • 1999
  • 원자력 발전소 계측 제어 시스템, 의료 관련 시스템, 항공 관련 시스템 등 실생활과 밀접한 시스템에 소프트웨어의 사용이 점차 증가하고 있다. 이러한 시스템에서 소프트웨어의 오류는 예기치 않는 사고를 유발하여 인명, 재산상의 심각한 타격을 줄 수 있다. 그러므로 고신뢰도 소프트웨어의 개발 시에는 반드시 시스템의 안전성을 보장해 주어야 한다. 역방향 안전성 분석 방법은 시스템의 안전성을 분석하는 한가지 방법으로서 시스템의 위험 상태를 정의하고 그 위험의 원인들을 추적, 분석함으로써 안전성에 대한 효율적인 분석을 수행할 수 있는 장점을 갖는다. 이 논문에서는 소프트웨어 개발 초기 단계에서 안전성을 분석할 수 있는 방법으로 Colored Petri Nets(CPN)에 기반을 둔 역방향 안전성 분석 방법을 제시한다. 또한 CPN 역방향 안전성 분석 도구인 SAC(Safety Analyzer for CPN)의 설계 및 구현에 대해 언급한다. SAC은 기존의 상용 CPN 모델링 도구인 Design/CPN과 연계하여 사용될 수 있으므로 CPN으로 모델링된 시스템의 안전성을 분석할 수 있다는 장점이 있다. 이 논문에서는 예제로 자동 교통 제어 시스템의 일부를 CPN으로 모델링하고 SAC을 이용한 분석 과정을 기술한다.Abstract In safety-critical systems such as nuclear power plants, medical machines, and avionic systems which are closely related with our livings, the usage of software in the controlling part is growing rapidly. Since software errors in safety-critical systems may cause serious accidents leading to financial or human damages, system safety should be ensured during and after development of a system. A backward safety analysis technique defines system hazards and tries to trace their causes by analyzing system states backward. In this paper, we provide a backward safety analysis technique based on Colored Petri Nets(CPN), which is applicable to the early software development phase. Also Safety Analyzer for CPN(SAC), the supporting tool, is designed and implemented. Since SAC is compatible with Design/CPN, a commercial tool for supporting CPN, it can be applicable to analyze safety in practical problems. As an example, we model a part of the traffic light control system using CPN and analyze safety properties of the model using the SAC tool.

A Process Model for the Systematic Development of Safety-Critical Systems (안전중시 시스템을 위한 체계적인 설계 프로세스에 관한 연구)

  • Yoon, Jae-Han;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.3
    • /
    • pp.19-26
    • /
    • 2009
  • It is becoming more and more important to develop safety-critical systems with special attention. Examples of the safety-critical systems include the mass transportation systems such as high speed trains, airplanes, ships and so forth. Safety critical issues can also exist in the development of atomic power plants that are attracting a great deal of attention recently as oil prices are sky-rocketing. Note that the safety-critical systems are in general large-scale and very complex for which case the effects of adopting the systems engineering (SE) approach has been quite phenomenal. Furthermore, safety-critical requirements should necessarily be realized in the design phase and be effectively maintained thereafter. In light of these comments, we have considered our approach to developing safety-critical systems to be based on the method combining the systems engineering and safety management processes. To do so, we have developed a design environment by constructing a whole life cycle model in two steps. In the first step, the integrated process model was developed by integrating the SE (ISO/IEC 15283) and systems safety (e.g., hazard analysis) activities and implemented in a computer-aided SE tool environment. The model was represented by three hierarchical levels: the life-cycle level, the process level, and the activity level. As a result, one can see from the model when and how the required SE and safety processes have to be carried out concurrently and iterately. Finally, the design environment was verified by the computer simulation.