• Title/Summary/Keyword: Computer Principal

Search Result 461, Processing Time 0.031 seconds

A Non-linear Variant of Improved Robust Fuzzy PCA (잡음 민감성이 향상된 주성분 분석 기법의 비선형 변형)

  • Heo, Gyeong-Yong;Seo, Jin-Seok;Lee, Im-Geun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.4
    • /
    • pp.15-22
    • /
    • 2011
  • Principal component analysis (PCA) is a well-known method for dimensionality reduction and feature extraction while maintaining most of the variation in data. Although PCA has been applied in many areas successfully, it is sensitive to outliers and only valid for Gaussian distributions. Several variants of PCA have been proposed to resolve noise sensitivity and, among the variants, improved robust fuzzy PCA (RF-PCA2) demonstrated promising results. RF-PCA, however, is still a linear algorithm that cannot accommodate non-Gaussian distributions. In this paper, a non-linear algorithm that combines RF-PCA2 and kernel PCA (K-PCA), called improved robust kernel fuzzy PCA (RKF-PCA2), is introduced. The kernel methods make it to accommodate non-Gaussian distributions. RKF-PCA2 inherits noise robustness from RF-PCA2 and non-linearity from K-PCA. RKF-PCA2 outperforms previous methods in handling non-Gaussian distributions in a noise robust way. Experimental results also support this.

Robust Primary-ambient Signal Decomposition Method using Principal Component Analysis with Phase Alignment (위상 정렬을 이용한 주성분 분석법의 강인한 스테레오 음원 분리 성능유지 기법)

  • Baek, Yong-Hyun;Hyun, Dong-Il;Park, Young-Cheol
    • Journal of Broadcast Engineering
    • /
    • v.19 no.1
    • /
    • pp.64-74
    • /
    • 2014
  • The primary and ambient signal decomposition of a stereo sound is a key step to the stereo upmix. The principal component analysis (PCA) is one of the most widely used methods of primary-ambient signal decomposition. However, previous PCA-based decomposition algorithms assume that stereo sound sources are only amplitude-panned without any consideration of phase difference. So it occurs some performance degradation in case of live recorded stereo sound. In this paper, we propose a new PCA-based stereo decomposition algorithm that can consider the phase difference between the channel signals. The proposed algorithm overcomes limitation of conventional signal model using PCA with phase alignment. The phase alignment is realized by using inter-channel phase difference (IPD) which is widely used in parametric stereo coding. Moreover, Enhanced Modified PCA(EMPCA) is combined to solve the problem of conventional PCA caused by Primary to Ambient energy Ratio(PAR) and panning angle dependency. The simulation results are presented to show the improvements of the proposed algorithm.

Optimization of Data Placement using Principal Component Analysis based Pareto-optimal method for Multi-Cloud Storage Environment

  • Latha, V.L. Padma;Reddy, N. Sudhakar;Babu, A. Suresh
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.248-256
    • /
    • 2021
  • Now that we're in the big data era, data has taken on a new significance as the storage capacity has exploded from trillion bytes to petabytes at breakneck pace. As the use of cloud computing expands and becomes more commonly accepted, several businesses and institutions are opting to store their requests and data there. Cloud storage's concept of a nearly infinite storage resource pool makes data storage and access scalable and readily available. The majority of them, on the other hand, favour a single cloud because of the simplicity and inexpensive storage costs it offers in the near run. Cloud-based data storage, on the other hand, has concerns such as vendor lock-in, privacy leakage and unavailability. With geographically dispersed cloud storage providers, multicloud storage can alleviate these dangers. One of the key challenges in this storage system is to arrange user data in a cost-effective and high-availability manner. A multicloud storage architecture is given in this study. Next, a multi-objective optimization problem is defined to minimise total costs and maximise data availability at the same time, which can be solved using a technique based on the non-dominated sorting genetic algorithm II (NSGA-II) and obtain a set of non-dominated solutions known as the Pareto-optimal set.. When consumers can't pick from the Pareto-optimal set directly, a method based on Principal Component Analysis (PCA) is presented to find the best answer. To sum it all up, thorough tests based on a variety of real-world cloud storage scenarios have proven that the proposed method performs as expected.

Measurement of the Visibility of the Smoke Images using PCA (PCA를 이용한 연기 영상의 가시도 측정)

  • Yu, Young-Jung;Moon, Sang-ho;Park, Seong-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.11
    • /
    • pp.1474-1480
    • /
    • 2018
  • When fires occur in high-rise buildings, it is difficult to determine whether each escape route is safe because of complex structure. Therefore, it is necessary to provide residents with escape routes quickly after determining their safety. We propose a method to measure the visibility of the escape route due to the smoke generated in the fire by analyzing the images. The visibility can be easily measured if the density of smoke detected in the input image is known. However, this approach is difficult to use because there are no suitable methods for measuring smoke density. In this paper, we use principal component analysis by extracting a background image from input images and making it training data. Background images and smoke images are extracted from images given as inputs, and then the learned principal component analysis is applied to map of as a new feature space, and the change is calculated and the visibility due to the smoke is measured.

Judging spinal deformity by two characteristic axes on a human back

  • Ishikawa, Seiji;Eguchi, Takemi;Yamaguchi, Toshihiko;Ki, Hyoung-Seop;Otsuka, Yoshinori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.438-441
    • /
    • 1996
  • Spinal deformity is a serious disease especially for teenagers and it is desirable for school children to be checked possible spinal deformity by moire photographic inspection method. The moire images of children's backs are visually inspected by doctors, which may cause misjudge because of a large amount of data they have to examine. A technique is proposed in this paper for automating this inspection by computer. Two characteristic axes, a potential symmetry axis approximating the human middle line and a principal axis representing the direction of a moire pattern are employed. Two principal axes are extracted locally on a back and their gradients against the potential symmetry axis are calculated. These gradients compose a 2D feature space and a linear discriminant function (LDF) is defined there which separates normal cases from suspicious cases. The LDF defined by 40 training, data was employed in the experiment to examine 40 test data and 77.5% of them were classified correctly. This amounts to 88.8% if the training data is included.

  • PDF

Stream Data Analysis of the Weather on the Location using Principal Component Analysis (주성분 분석을 이용한 지역기반의 날씨의 스트림 데이터 분석)

  • Kim, Sang-Yeob;Kim, Kwang-Deuk;Bae, Kyoung-Ho;Ryu, Keun-Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.2
    • /
    • pp.233-237
    • /
    • 2010
  • The recent advance of sensor networks and ubiquitous techniques allow collecting and analyzing of the data which overcome the limitation imposed by time and space in real-time for making decisions. Also, analysis and prediction of collected data can support useful and necessary information to users. The collected data in sensor networks environment is the stream data which has continuous, unlimited and sequential properties. Because of the continuous, unlimited and large volume properties of stream data, managing stream data is difficult. And the stream data needs dynamic processing method because of the memory constraint and access limitation. Accordingly, we analyze correlation stream data using principal component analysis. And using result of analysis, it helps users for making decisions.

Identifying an Appropriate Analysis Duration for the Principal Component Analysis of Water Pipe Flow Data (상수도 관망 유량관측 자료의 주성분 분석을 위한 분석기간의 설정)

  • Park, Suwan;Jeon, Daehoon;Jung, Soyeon;Kim, Joohwan;Lee, Doojin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.3
    • /
    • pp.351-361
    • /
    • 2013
  • In this study the Principal Component Analysis (PCA) was applied to flow data in a water distribution pipe system to analyze the relevance between the flow observation dates, which have the outliers of observed night flows, and the maintenance records. The data was obtained from four small size water distribution blocks to which 13 maintenance records such as pipe leak and water meter leak belong. The flow data during four months were used for the analysis. The analysis was carried out to identify an appropriate analysis period for a PCA model for a water distribution block. To facilitate the analyses a computational algorithm was developed. MATLAB was utilized to realize the algorithm as a computer program. As a result, an appropriate PCA period for each of the case study small size water distribution blocks was identified.

Assisted Magnetic Resonance Imaging Diagnosis for Alzheimer's Disease Based on Kernel Principal Component Analysis and Supervised Classification Schemes

  • Wang, Yu;Zhou, Wen;Yu, Chongchong;Su, Weijun
    • Journal of Information Processing Systems
    • /
    • v.17 no.1
    • /
    • pp.178-190
    • /
    • 2021
  • Alzheimer's disease (AD) is an insidious and degenerative neurological disease. It is a new topic for AD patients to use magnetic resonance imaging (MRI) and computer technology and is gradually explored at present. Preprocessing and correlation analysis on MRI data are firstly made in this paper. Then kernel principal component analysis (KPCA) is used to extract features of brain gray matter images. Finally supervised classification schemes such as AdaBoost algorithm and support vector machine algorithm are used to classify the above features. Experimental results by means of AD program Alzheimer's Disease Neuroimaging Initiative (ADNI) database which contains brain structural MRI (sMRI) of 116 AD patients, 116 patients with mild cognitive impairment, and 117 normal controls show that the proposed method can effectively assist the diagnosis and analysis of AD. Compared with principal component analysis (PCA) method, all classification results on KPCA are improved by 2%-6% among which the best result can reach 84%. It indicates that KPCA algorithm for feature extraction is more abundant and complete than PCA.

Face Tracking System Using Updated Skin Color (업데이트된 피부색을 이용한 얼굴 추적 시스템)

  • Ahn, Kyung-Hee;Kim, Jong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.5
    • /
    • pp.610-619
    • /
    • 2015
  • *In this paper, we propose a real-time face tracking system using an adaptive face detector and a tracking algorithm. An image is divided into the regions of background and face candidate by a real-time updated skin color identifying system in order to accurately detect facial features. The facial characteristics are extracted using the five types of simple Haar-like features. The extracted features are reinterpreted by Principal Component Analysis (PCA), and the interpreted principal components are processed by Support Vector Machine (SVM) that classifies into facial and non-facial areas. The movement of the face is traced by Kalman filter and Mean shift, which use the static information of the detected faces and the differences between previous and current frames. The proposed system identifies the initial skin color and updates it through a real-time color detecting system. A similar background color can be removed by updating the skin color. Also, the performance increases up to 20% when the background color is reduced in comparison to extracting features from the entire region. The increased detection rate and speed are acquired by the usage of Kalman filter and Mean shift.

Target segmentation in non-homogeneous infrared images using a PCA plane and an adaptive Gaussian kernel

  • Kim, Yong Min;Park, Ki Tae;Moon, Young Shik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.2302-2316
    • /
    • 2015
  • We propose an efficient method of extracting targets within a region of interest in non-homogeneous infrared images by using a principal component analysis (PCA) plane and adaptive Gaussian kernel. Existing approaches for extracting targets have been limited to using only the intensity values of the pixels in a target region. However, it is difficult to extract the target regions effectively because the intensity values of the target region are mixed with the background intensity values. To overcome this problem, we propose a novel PCA based approach consisting of three steps. In the first step, we apply a PCA technique minimizing the total least-square errors of an IR image. In the second step, we generate a binary image that consists of pixels with higher values than the plane, and then calculate the second derivative of the sum of the square errors (SDSSE). In the final step, an iteration is performed until the convergence criteria is met, including the SDSSE, angle and labeling value. Therefore, a Gaussian kernel is weighted in addition to the PCA plane with the non-removed data from the previous step. Experimental results show that the proposed method achieves better segmentation performance than the existing method.