• Title/Summary/Keyword: Computer Application

Search Result 7,943, Processing Time 0.039 seconds

Deep Learning OCR based document processing platform and its application in financial domain (금융 특화 딥러닝 광학문자인식 기반 문서 처리 플랫폼 구축 및 금융권 내 활용)

  • Dongyoung Kim;Doohyung Kim;Myungsung Kwak;Hyunsoo Son;Dongwon Sohn;Mingi Lim;Yeji Shin;Hyeonjung Lee;Chandong Park;Mihyang Kim;Dongwon Choi
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.143-174
    • /
    • 2023
  • With the development of deep learning technologies, Artificial Intelligence powered Optical Character Recognition (AI-OCR) has evolved to read multiple languages from various forms of images accurately. For the financial industry, where a large number of diverse documents are processed through manpower, the potential for using AI-OCR is great. In this study, we present a configuration and a design of an AI-OCR modality for use in the financial industry and discuss the platform construction with application cases. Since the use of financial domain data is prohibited under the Personal Information Protection Act, we developed a deep learning-based data generation approach and used it to train the AI-OCR models. The AI-OCR models are trained for image preprocessing, text recognition, and language processing and are configured as a microservice architected platform to process a broad variety of documents. We have demonstrated the AI-OCR platform by applying it to financial domain tasks of document sorting, document verification, and typing assistance The demonstrations confirm the increasing work efficiency and conveniences.

Implementation of An Automatic Authentication System Based on Patient's Situations and Its Performance Evaluation (환자상황 기반의 자동인증시스템 구축 및 성능평가)

  • Ham, Gyu-Sung;Joo, Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.21 no.4
    • /
    • pp.25-34
    • /
    • 2020
  • In the current medical information system, a system environment is constructed in which Biometric data generated by using IoT or medical equipment connected to a patient can be stored in a medical information server and monitored at the same time. Also, the patient's biometric data, medical information, and personal information after simple authentication using only the ID / PW via the mobile terminal of the medical staff are easily accessible. However, the method of accessing these medical information needs to be improved in the dimension of protecting patient's personal information, and provides a quick authentication system for first aid. In this paper, we implemented an automatic authentication system based on the patient's situation and evaluated its performance. Patient's situation was graded into normal and emergency situation, and the situation of the patient was determined in real time using incoming patient biometric data from the ward. If the patient's situation is an emergency, an emergency message including an emergency code is send to the mobile terminal of the medical staff, and they attempted automatic authentication to access the upper medical information of the patient. Automatic authentication is a combination of user authentication(ID/PW, emergency code) and mobile terminal authentication(medical staff's role, working hours, work location). After user authentication, mobile terminal authentication is proceeded automatically without additional intervention by medical staff. After completing all authentications, medical staffs get authorization according to the role of medical staffs and patient's situations, and can access to the patient's graded medical information and personal information through the mobile terminal. We protected the patient's medical information through limited medical information access by the medical staff according to the patient's situation, and provided an automatic authentication without additional intervention in an emergency situation. We performed performance evaluation to verify the performance of the implemented automatic authentication system.

Development of Respiration Gating RT Technique using Moving Phantom and Ultrasound Sensor: a feasibility study (동 팬텀과 초음파 센서를 이용한 호흡운동 조절 방사선치료 기술 개발)

  • Lee, Suk;Lee, Sang-Hoon;Shin, Dong-Ho;Yang, Dae-Sik;Choi, Myung-Sun;Kim, Chul-Yong
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.122-125
    • /
    • 2004
  • In radiotherapy of tumors in liver, enough planning target volume (PTV) margins are necessary to compensate breathing-related movement of tumor volumes. To overcome the problems, this study aims to obtain patients' body movements by using a moving phantom and an ultrasonic sensor, and to develop respiration gating techniques that can adjust patients' beds by using reversed values of the data obtained. The phantom made to measure patients' body movements is composed of a microprocessor (BS II, 20 MHz, 8K Byte), a sensor (Ultra-Sonic, range 3 cm ${\sim}$3 m), host computer (RS232C) and stepping motor (torque 2.3Kg) etc., and the program to control and operate it was developed. The program allows the phantom to move within the maximum range of 2 cm, its movements and corrections to take place in order, and x, y and z to move successively. After the moving phantom was adjusted by entering random movement data(three dimensional data form with distance of 2cm), and the phantom movements were acquired using the ultra sonic sensor, the two data were compared and analyzed. And then, after the movements by respiration were acquired by using guinea pigs, the real-time respiration gating techniques were drawn by operating the phantom with the reversed values of the data. The result of analyzing the acquisition-correction delay time for the three types of data values and about each value separately shows that the data values coincided with one another within 1% and that the acquisition-correction delay time was obtained real-time (2.34 ${\times}$ 10$^{-4}$sec). This study successfully confirms the clinic application possibility of respiration gating techniques by using a moving phantom and an ultra sonic sensor. With ongoing development of additional analysis system, which can be used in real-time set-up reproducibility analysis, it may be beneficially used in radiotherapy of moving tumors.

  • PDF

A Development of Tapered Metallic Microneedle Array for Bio-medical Application (생체의학에 적용 가능한 테이퍼형태의 금속성 마이코로니들 어레이의 개발)

  • Che Woo Seong;Lee Jeong-Bong;Kim Kabseog;Kim Kyunghwan;Jin Byung-Uk
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.2 s.31
    • /
    • pp.59-66
    • /
    • 2004
  • This paper presents a novel fabrication process for a tapered hollow metallic microneedle array using backside exposure of SU-8, and analytic solutions of critical buckling of a tapered hollow microneedle. An SU-8 meta was formed on a Pyrex glass substrate and another SU-8 layer, which was spun on top of the SU-8 mesa, was exposed through the backside of the glass substrate. An array of SU-8 tapered pillar structures. with angles in the range of $3.1^{\circ}{\sim}5^{\circ}$ was formed on top of the SU-8 mesa. Conformal electrodeposition of metal was carried out followed by a mechanical polishing using a pianarizing polymeric layer. All organic layers were then removed to create a metallic hollow microneedle array with a fluidic reservoir on the backside. Both $200{\mu}m\;and\;400{\mu}m$ tall, 10 by 10 arrays of metallic microneedles with inner diameters of the tip in the range of $33.6{\sim}101\;{\mu}m$ and wall thickness of $10{\mu}m\;-\;20{\mu}m$ were fabricated. Analytic solutions of the critical buckling of arbitrary-angled truncated cone-shaped columns are also presented. It was found that a single $400{\mu}m$ tall hollow cylindrical microneedle made of electroplated nickel with a wall thickness of $20{\mu}m$, a tapered angle of $3.08^{\circ}$ and a tip inner diameter of $33.6{\mu}m$ has a critical buckling force of 1.8 N. This analytic solution can be used for square or rectangular cross-sectioned column structures with proper modifications.

  • PDF

EEG based Cognitive Load Measurement for e-learning Application (이러닝 적용을 위한 뇌파기반 인지부하 측정)

  • Kim, Jun;Song, Ki-Sang
    • Korean Journal of Cognitive Science
    • /
    • v.20 no.2
    • /
    • pp.125-154
    • /
    • 2009
  • This paper describes the possibility of human physiological data, especially brain-wave activity, to detect cognitive overload, a phenomenon that may occur while learner uses an e-learning system. If it is found that cognitive overload to be detectable, providing appropriate feedback to learners may be possible. To illustrate the possibility, while engaging in cognitive activities, cognitive load levels were measured by EEG (electroencephalogram) to seek detection of cognitive overload. The task given to learner was a computerized listening and recall test designed to measure working memory capacity, and the test had four progressively increasing degrees of difficulty. Eight male, right-handed, university students were asked to answer 4 sets of tests and each test took from 61 seconds to 198 seconds. A correction ratio was then calculated and EEG results analyzed. The correction ratio of listening and recall tests were 84.5%, 90.6%, 62.5% and 56.3% respectively, and the degree of difficulty had statistical significance. The data highlighted learner cognitive overload on test level of 3 and 4, the higher level tests. Second, the SEF-95% value was greater on test3 and 4 than on tests 1 and 2 indicating that tests 3 and 4 imposed greater cognitive load on participants. Third, the relative power of EEG gamma wave rapidly increased on the 3rd and $4^{th}$ test, and signals from channel F3, F4, C4, F7, and F8 showed statistically significance. These five channels are surrounding the brain's Broca area, and from a brain mapping analysis it was found that F8, right-half of the brain area, was activated relative to the degree of difficulty. Lastly, cross relation analysis showed greater increasing in synchronization at test3 and $4^{th}$ at test1 and 2. From these findings, it is possible to measure brain cognitive load level and cognitive over load via brain activity, which may provide atimely feedback scheme for e-learning systems.

  • PDF

Design and Implementation of Medical Information System using QR Code (QR 코드를 이용한 의료정보 시스템 설계 및 구현)

  • Lee, Sung-Gwon;Jeong, Chang-Won;Joo, Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.16 no.2
    • /
    • pp.109-115
    • /
    • 2015
  • The new medical device technologies for bio-signal information and medical information which developed in various forms have been increasing. Information gathering techniques and the increasing of the bio-signal information device are being used as the main information of the medical service in everyday life. Hence, there is increasing in utilization of the various bio-signals, but it has a problem that does not account for security reasons. Furthermore, the medical image information and bio-signal of the patient in medical field is generated by the individual device, that make the situation cannot be managed and integrated. In order to solve that problem, in this paper we integrated the QR code signal associated with the medial image information including the finding of the doctor and the bio-signal information. bio-signal. System implementation environment for medical imaging devices and bio-signal acquisition was configured through bio-signal measurement, smart device and PC. For the ROI extraction of bio-signal and the receiving of image information that transfer from the medical equipment or bio-signal measurement, .NET Framework was used to operate the QR server module on Window Server 2008 operating system. The main function of the QR server module is to parse the DICOM file generated from the medical imaging device and extract the identified ROI information to store and manage in the database. Additionally, EMR, patient health information such as OCS, extracted ROI information needed for basic information and emergency situation is managed by QR code. QR code and ROI management and the bio-signal information file also store and manage depending on the size of receiving the bio-singnal information case with a PID (patient identification) to be used by the bio-signal device. If the receiving of information is not less than the maximum size to be converted into a QR code, the QR code and the URL information can access the bio-signal information through the server. Likewise, .Net Framework is installed to provide the information in the form of the QR code, so the client can check and find the relevant information through PC and android-based smart device. Finally, the existing medical imaging information, bio-signal information and the health information of the patient are integrated over the result of executing the application service in order to provide a medical information service which is suitable in medical field.

Analysis and Performance Evaluation of Pattern Condensing Techniques used in Representative Pattern Mining (대표 패턴 마이닝에 활용되는 패턴 압축 기법들에 대한 분석 및 성능 평가)

  • Lee, Gang-In;Yun, Un-Il
    • Journal of Internet Computing and Services
    • /
    • v.16 no.2
    • /
    • pp.77-83
    • /
    • 2015
  • Frequent pattern mining, which is one of the major areas actively studied in data mining, is a method for extracting useful pattern information hidden from large data sets or databases. Moreover, frequent pattern mining approaches have been actively employed in a variety of application fields because the results obtained from them can allow us to analyze various, important characteristics within databases more easily and automatically. However, traditional frequent pattern mining methods, which simply extract all of the possible frequent patterns such that each of their support values is not smaller than a user-given minimum support threshold, have the following problems. First, traditional approaches have to generate a numerous number of patterns according to the features of a given database and the degree of threshold settings, and the number can also increase in geometrical progression. In addition, such works also cause waste of runtime and memory resources. Furthermore, the pattern results excessively generated from the methods also lead to troubles of pattern analysis for the mining results. In order to solve such issues of previous traditional frequent pattern mining approaches, the concept of representative pattern mining and its various related works have been proposed. In contrast to the traditional ones that find all the possible frequent patterns from databases, representative pattern mining approaches selectively extract a smaller number of patterns that represent general frequent patterns. In this paper, we describe details and characteristics of pattern condensing techniques that consider the maximality or closure property of generated frequent patterns, and conduct comparison and analysis for the techniques. Given a frequent pattern, satisfying the maximality for the pattern signifies that all of the possible super sets of the pattern must have smaller support values than a user-specific minimum support threshold; meanwhile, satisfying the closure property for the pattern means that there is no superset of which the support is equal to that of the pattern with respect to all the possible super sets. By mining maximal frequent patterns or closed frequent ones, we can achieve effective pattern compression and also perform mining operations with much smaller time and space resources. In addition, compressed patterns can be converted into the original frequent pattern forms again if necessary; especially, the closed frequent pattern notation has the ability to convert representative patterns into the original ones again without any information loss. That is, we can obtain a complete set of original frequent patterns from closed frequent ones. Although the maximal frequent pattern notation does not guarantee a complete recovery rate in the process of pattern conversion, it has an advantage that can extract a smaller number of representative patterns more quickly compared to the closed frequent pattern notation. In this paper, we show the performance results and characteristics of the aforementioned techniques in terms of pattern generation, runtime, and memory usage by conducting performance evaluation with respect to various real data sets collected from the real world. For more exact comparison, we also employ the algorithms implementing these techniques on the same platform and Implementation level.

Development of Respiration Gating RT Technique using Moving Phantom and Ultrasound Sensor: a feasibility study (동 팬텀과 초음파 센서를 이용한 호흡운동 조절 방사선치료 기술 개발)

  • Lee Suk;Lee Sang Hoon;Shin Dongho;Yang Dae Sik;Choi Myung Sun;Kim Chul Yong
    • Radiation Oncology Journal
    • /
    • v.22 no.4
    • /
    • pp.316-324
    • /
    • 2004
  • Purpose : In radiotherapy of tumors in liver, enough planning target volume (PTV) margins are necessary to compensate breathing-related movement of tumor volumes. To overcome the problems, this study aims to obtain patients' body movements by using a moving phantom and an ultrasonic sensor, and to develop respiration sating techniques that can adjust patients' beds by using reversed values of the data obtained. Materials and Methods : The phantom made to measure patients' body movements is composed of a microprocessor (BS II, 20 MHz, 8K Byte), a sensor (Ultra-Sonic, range $3\~3$ m), host computer (RS232C) and stepping motor (torque 2.3 Kg) etc., and the program to control and operate it was developed. The program allows the phantom to move within the maximum range of 2 cm, its movements and corrections to take place In order, and x, y and z to move successively. After the moving phantom was adjusted by entering random movement data (three dimensional data form with distance of 2 cm), and the phantom movements were acquired using the ultra sonic sensor, the two data were compared and analyzed. And then, after the movements by respiration were acquired by using guinea pigs, the real-time respiration gating techniques were drawn by operating the phantom with the reversed values of the data. Results : The result of analyzing the acquisition-correction delay time the three types of data values and about each value separately shows that the data values coincided with one another within $1\%$ and that the acquisition-correction delay time was obtained real-time $(2.34{\times}10^{-4}sec)$. Conclusion : This study successfully confirms the clinic application possibility of respiration gating techniques by using a moving phantom and an ultrasonic sensor. With ongoing development of additional analysis system, which can be used in real-time set-up reproducibility analysis, it may be beneficially used in radiotherapy of moving tumors.

Increase of Tc-99m RBC SPECT Sensitivity for Small Liver Hemangioma using Ordered Subset Expectation Maximization Technique (Tc-99m RBC SPECT에서 Ordered Subset Expectation Maximization 기법을 이용한 작은 간 혈관종 진단 예민도의 향상)

  • Jeon, Tae-Joo;Bong, Jung-Kyun;Kim, Hee-Joung;Kim, Myung-Jin;Lee, Jong-Doo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.6
    • /
    • pp.344-356
    • /
    • 2002
  • Purpose: RBC blood pool SPECT has been used to diagnose focal liver lesion such as hemangioma owing to its high specificity. However, low spatial resolution is a major limitation of this modality. Recently, ordered subset expectation maximization (OSEM) has been introduced to obtain tomographic images for clinical application. We compared this new modified iterative reconstruction method, OSEM with conventional filtered back projection (FBP) in imaging of liver hemangioma. Materials and Methods: Sixty four projection data were acquired using dual head gamma camera in 28 lesions of 24 patients with cavernous hemangioma of liver and these raw data were transferred to LINUX based personal computer. After the replacement of header file as interfile, OSEM was performed under various conditions of subsets (1,2,4,8,16, and 32) and iteration numbers (1,2,4,8, and 16) to obtain the best setting for liver imaging. The best condition for imaging in our investigation was considered to be 4 iterations and 16 subsets. After then, all the images were processed by both FBP and OSEM. Three experts reviewed these images without any information. Results: According to blind review of 28 lesions, OSEM images revealed at least same or better image quality than those of FBP in nearly all cases. Although there showed no significant difference in detection of large lesions more than 3 cm, 5 lesions with 1.5 to 3 cm in diameter were detected by OSEM only. However, both techniques failed to depict 4 cases of small lesions less than 1.5 cm. Conclusion: OSEM revealed better contrast and define in depiction of liver hemangioma as well as higher sensitivity in detection of small lesions. Furthermore this reconstruction method dose not require high performance computer system or long reconstruction time, therefore OSEM is supposed to be good method that can be applied to RBC blood pool SPECT for the diagnosis of liver hemangioma.

Multi-Vector Document Embedding Using Semantic Decomposition of Complex Documents (복합 문서의 의미적 분해를 통한 다중 벡터 문서 임베딩 방법론)

  • Park, Jongin;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.19-41
    • /
    • 2019
  • According to the rapidly increasing demand for text data analysis, research and investment in text mining are being actively conducted not only in academia but also in various industries. Text mining is generally conducted in two steps. In the first step, the text of the collected document is tokenized and structured to convert the original document into a computer-readable form. In the second step, tasks such as document classification, clustering, and topic modeling are conducted according to the purpose of analysis. Until recently, text mining-related studies have been focused on the application of the second steps, such as document classification, clustering, and topic modeling. However, with the discovery that the text structuring process substantially influences the quality of the analysis results, various embedding methods have actively been studied to improve the quality of analysis results by preserving the meaning of words and documents in the process of representing text data as vectors. Unlike structured data, which can be directly applied to a variety of operations and traditional analysis techniques, Unstructured text should be preceded by a structuring task that transforms the original document into a form that the computer can understand before analysis. It is called "Embedding" that arbitrary objects are mapped to a specific dimension space while maintaining algebraic properties for structuring the text data. Recently, attempts have been made to embed not only words but also sentences, paragraphs, and entire documents in various aspects. Particularly, with the demand for analysis of document embedding increases rapidly, many algorithms have been developed to support it. Among them, doc2Vec which extends word2Vec and embeds each document into one vector is most widely used. However, the traditional document embedding method represented by doc2Vec generates a vector for each document using the whole corpus included in the document. This causes a limit that the document vector is affected by not only core words but also miscellaneous words. Additionally, the traditional document embedding schemes usually map each document into a single corresponding vector. Therefore, it is difficult to represent a complex document with multiple subjects into a single vector accurately using the traditional approach. In this paper, we propose a new multi-vector document embedding method to overcome these limitations of the traditional document embedding methods. This study targets documents that explicitly separate body content and keywords. In the case of a document without keywords, this method can be applied after extract keywords through various analysis methods. However, since this is not the core subject of the proposed method, we introduce the process of applying the proposed method to documents that predefine keywords in the text. The proposed method consists of (1) Parsing, (2) Word Embedding, (3) Keyword Vector Extraction, (4) Keyword Clustering, and (5) Multiple-Vector Generation. The specific process is as follows. all text in a document is tokenized and each token is represented as a vector having N-dimensional real value through word embedding. After that, to overcome the limitations of the traditional document embedding method that is affected by not only the core word but also the miscellaneous words, vectors corresponding to the keywords of each document are extracted and make up sets of keyword vector for each document. Next, clustering is conducted on a set of keywords for each document to identify multiple subjects included in the document. Finally, a Multi-vector is generated from vectors of keywords constituting each cluster. The experiments for 3.147 academic papers revealed that the single vector-based traditional approach cannot properly map complex documents because of interference among subjects in each vector. With the proposed multi-vector based method, we ascertained that complex documents can be vectorized more accurately by eliminating the interference among subjects.