• 제목/요약/키워드: Computer Application

Search Result 7,943, Processing Time 0.038 seconds

Application of Cognitive Enhancement Protocol Based on Information & Communication Technology Program to Improve Cognitive Level of Older Adults Residents in Small-Sized City Community: A Pilot Study (중소도시 지역사회 거주 노인의 치매예방을 위한 Information & Communication Technology 프로그램 기반 인지향상 프로토콜 적용: 파일럿(Pilot) 연구)

  • Yun, Sohyeon;Lee, Hamin;Kim, Mi Kyeong;Park, Hae Yean
    • Therapeutic Science for Rehabilitation
    • /
    • v.12 no.2
    • /
    • pp.69-83
    • /
    • 2023
  • Objective : This study, as a preliminary study, applied an Information & Communication Technology (ICT) home-based program to elderly people aged 65 years or older to confirm the effect of the cognitive enhancement program and to find the possibility of remote rehabilitation. Methods : This study from August to October 2022, three subjects were selected and the intervention was conducted for about 2 months. This intervention was conducted using Korean version of Mini-Mental State Examination, Korean version of Montreal Cognitive Assessment (MoCA-K), Computer Cognitive Senior Assessment System, and the Center for Epidemiologic Studies Depression scale to evaluate cognitive improvement before and after the program. The therapist remotely set the level of cognitive training according to the subject's level through weekly feedback. Results : After the intervention, all subjects showed improved scores in most items of the MoCA-K conducted before and after the intervention. In addition, among the items of Cotras-pro, upper cognition, language ability, attention, visual perception, and memory were improved. Conclusion : Cognitive rehabilitation training using an ICT home-based program not only prevented dementia but also made it habitual. Through this study, it was confirmed that remote rehabilitation for the elderly could be possible.

A Comparison of Image Classification System for Building Waste Data based on Deep Learning (딥러닝기반 건축폐기물 이미지 분류 시스템 비교)

  • Jae-Kyung Sung;Mincheol Yang;Kyungnam Moon;Yong-Guk Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.3
    • /
    • pp.199-206
    • /
    • 2023
  • This study utilizes deep learning algorithms to automatically classify construction waste into three categories: wood waste, plastic waste, and concrete waste. Two models, VGG-16 and ViT (Vision Transformer), which are convolutional neural network image classification algorithms and NLP-based models that sequence images, respectively, were compared for their performance in classifying construction waste. Image data for construction waste was collected by crawling images from search engines worldwide, and 3,000 images, with 1,000 images for each category, were obtained by excluding images that were difficult to distinguish with the naked eye or that were duplicated and would interfere with the experiment. In addition, to improve the accuracy of the models, data augmentation was performed during training with a total of 30,000 images. Despite the unstructured nature of the collected image data, the experimental results showed that VGG-16 achieved an accuracy of 91.5%, and ViT achieved an accuracy of 92.7%. This seems to suggest the possibility of practical application in actual construction waste data management work. If object detection techniques or semantic segmentation techniques are utilized based on this study, more precise classification will be possible even within a single image, resulting in more accurate waste classification

Perception of Science Core Competencies of High School Students who Participated in the 'Skills' based Inquiry Class of the 2015 Revised Science Curriculum (2015 개정 과학과 교육과정의 '기능' 기반 탐구 수업에 참여한 고등학생의 과학과 핵심역량에 대한 인식)

  • Sangyou Park;Wonho Choi
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.2
    • /
    • pp.87-98
    • /
    • 2023
  • In this study, we investigated the change in science core competency perception of high school students and the reason for change when science inquiry classes were conducted using eight 'skills' of the 2015 revised science curriculum. Fifteen first-year high school students in Jeollanam-do participated in the science inquiry class of this study, and the class was conducted for 20 hours (5 hours a day for four days). The inquiry activities used in the class consisted of four activity stages (research problems, research methods, research results, and conclusions) and each stage was constructed to include at least one 'skill (Problem Recognition, Model Development and Use, Inquiry Design and Performance, Data Collection, Analysis and Interpretation, Mathematical Thinking and Computer Application, Conclusion and Evaluation, Evidence-based Discussion and Demonstration, and Communication)'. As a result of the study, students' perception of the five science core competencies increased statistically significantly at the significance level of 0.01 through inquiry classes and more than 93% of students recognized that their science core competencies improved through the classes. However, since the class of this study was conducted for a small number of students, it is difficult to generalize the effect of the class, and so it is necessary to conduct a quantitative study for many students.

Performance analysis and prediction through various over-provision on NAND flash memory based storage (낸드 플래시 메모리기반 저장 장치에서 다양한 초과 제공을 통한 성능 분석 및 예측)

  • Lee, Hyun-Seob
    • Journal of Digital Convergence
    • /
    • v.20 no.3
    • /
    • pp.343-348
    • /
    • 2022
  • Recently, With the recent rapid development of technology, the amount of data generated by various systems is increasing, and enterprise servers and data centers that have to handle large amounts of big data need to apply high-stability and high-performance storage devices even if costs increase. In such systems, SSD(solid state disk) that provide high performance of read/write are often used as storage devices. However, due to the characteristics of reading and writing on a page-by-page basis, erasing operations on a block basis, and erassing-before-writing, there is a problem that performance is degraded when duplicate writes occur. Therefore, in order to delay this performance degradation problem, over-provision technology of SSD has been applied internally. However, since over-provided technologies have the disadvantage of consuming a lot of storage space instead of performance, the application of inefficient technologies above the right performance has a problem of over-costing. In this paper, we proposed a method of measuring the performance and cost incurred when various over-provisions are applied in an SSD and predicting the system-optimized over-provided ratio based on this. Through this research, we expect to find a trade-off with costs to meet the performance requirements in systems that process big data.

Predicting Future ESG Performance using Past Corporate Financial Information: Application of Deep Neural Networks (심층신경망을 활용한 데이터 기반 ESG 성과 예측에 관한 연구: 기업 재무 정보를 중심으로)

  • Min-Seung Kim;Seung-Hwan Moon;Sungwon Choi
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.85-100
    • /
    • 2023
  • Corporate ESG performance (environmental, social, and corporate governance) reflecting a company's strategic sustainability has emerged as one of the main factors in today's investment decisions. The traditional ESG performance rating process is largely performed in a qualitative and subjective manner based on the institution-specific criteria, entailing limitations in reliability, predictability, and timeliness when making investment decisions. This study attempted to predict the corporate ESG rating through automated machine learning based on quantitative and disclosed corporate financial information. Using 12 types (21,360 cases) of market-disclosed financial information and 1,780 ESG measures available through the Korea Institute of Corporate Governance and Sustainability during 2019 to 2021, we suggested a deep neural network prediction model. Our model yielded about 86% of accurate classification performance in predicting ESG rating, showing better performance than other comparative models. This study contributed the literature in a way that the model achieved relatively accurate ESG rating predictions through an automated process using quantitative and publicly available corporate financial information. In terms of practical implications, the general investors can benefit from the prediction accuracy and time efficiency of our proposed model with nominal cost. In addition, this study can be expanded by accumulating more Korean and international data and by developing a more robust and complex model in the future.

Development of Geotechnical Information Input System Based on GIS on Standization of Geotechnical Investigation Result-format and Metadata (지반조사성과 양식 및 메타데이터 표준화를 통한 GIS기반의 지반정보 입력시스템 개발)

  • Jang, YongGu;Lee, SangHoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4D
    • /
    • pp.545-551
    • /
    • 2008
  • The MOCT(Ministry of Construction & Transportation) gave a order named as "The guideline for computerization and application of geotechnical investigation result" to an affiliated organization in March 2007. Today, pilot project of construction of geotechnical information database is in process to be stable for its system after applying this guideline, and discipline how to input investigated data for related users. We have developed standard for geotechnical investigation result-format, metadata for distribution of geotechnical information and to coordinate based on world geodetic system. Also, We had a introduce to status with respect to use the input system, collect a statistics of input contents. At a result, improvement items of input system is proposed. It was analyzed that most users put to practical use easily as a result of education for making use of on the spot of the developed GIIS. But There were problems with the GIIS as well as complexity of metadata formation, such as error of moving part of information window, and a part of recognition error of install program in accordance with computer OS circumstances. Particularly, to improve some parts of GIIS is needed, because of use of or KNHC (Korea National Housing Corporation)-specific format and difference of input process followed by MOCT's guideline. In this study, it is planning to make up for occurred problems, and improvements when operating and managing the Geotechnical Information DB center in 2008.

Development and Application of Convergence Education about Support Vector Machine for Elementary Learners (초등 학습자를 위한 서포트 벡터 머신 융합 교육 프로그램의 개발과 적용)

  • Yuri Hwang;Namje Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.95-103
    • /
    • 2023
  • This paper proposes an artificial intelligence convergence education program for teaching the main concept and principle of Support Vector Machines(SVM) at elementary schools. The developed program, based on Jeju's natural environment theme, explains the decision boundary and margin of SVM by vertical and parallel from 4th grade mathematics curriculum. As a result of applying the developed program to 3rd and 5th graders, most students intuitively inferred the location of the decision boundary. The overall performance accuracy and rate of reasonable inference of 5th graders were higher. However, in the self-evaluation of understanding, the average value was higher in the 3rd grade, contrary to the actual understanding. This was due to the fact that junior learners had a greater tendency to feel satisfaction and achievement. On the other hand, senior learners presented more meaningful post-class questions based on their motivation for further exploration. We would like to find effective ways for artificial intelligence convergence education for elementary school students.

Design and Application of Artificial Intelligence Experience Education Class for Non-Majors (비전공자 대상 인공지능 체험교육 수업 설계 및 적용)

  • Su-Young Pi
    • Journal of Practical Engineering Education
    • /
    • v.15 no.2
    • /
    • pp.529-538
    • /
    • 2023
  • At the present time when the need for universal artificial intelligence education is expanding and job changes are being made, research and discussion on artificial intelligence liberal arts education for non-majors in universities who experience artificial intelligence as part of their job is insufficient. Although artificial intelligence education courses for non-majors are being operated, they are mainly operated as theory-oriented education on the concepts and principles of artificial intelligence. In order to understand the general concept of artificial intelligence for non-majors, it is necessary to proceed with experiential learning in parallel. Therefore, this study designs artificial intelligence experiential education learning contents of difficulty that can reduce the burden of artificial intelligence classes with interest in learning by considering the characteristics of non-majors. After, we will examine the learning effect of experiential education using App Inventor and the Orange artificial intelligence platform. As a result of analysis based on the learning-related data and survey data collected through the creation of AI-related projects by teams, positive changes in the perception of the need for AI education were found, and AI literacy skills improved. It is expected that it will serve as an opportunity for instructors to lay the groundwork for designing a learning model for artificial intelligence experiential education learning.

A Study of Development and Application of an Inland Water Body Training Dataset Using Sentinel-1 SAR Images in Korea (Sentinel-1 SAR 영상을 활용한 국내 내륙 수체 학습 데이터셋 구축 및 알고리즘 적용 연구)

  • Eu-Ru Lee;Hyung-Sup Jung
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1371-1388
    • /
    • 2023
  • Floods are becoming more severe and frequent due to global warming-induced climate change. Water disasters are rising in Korea due to severe rainfall and wet seasons. This makes preventive climate change measures and efficient water catastrophe responses crucial, and synthetic aperture radar satellite imagery can help. This research created 1,423 water body learning datasets for individual water body regions along the Han and Nakdong waterways to reflect domestic water body properties discovered by Sentinel-1 satellite radar imagery. We created a document with exact data annotation criteria for many situations. After the dataset was processed, U-Net, a deep learning model, analyzed water body detection results. The results from applying the learned model to water body locations not involved in the learning process were studied to validate soil water body monitoring on a national scale. The analysis showed that the created water body area detected water bodies accurately (F1-Score: 0.987, Intersection over Union [IoU]: 0.955). Other domestic water body regions not used for training and evaluation showed similar accuracy (F1-Score: 0.941, IoU: 0.89). Both outcomes showed that the computer accurately spotted water bodies in most areas, however tiny streams and gloomy areas had problems. This work should improve water resource change and disaster damage surveillance. Future studies will likely include more water body attribute datasets. Such databases could help manage and monitor water bodies nationwide and shed light on misclassified regions.

Predicting the splitting tensile strength of manufactured-sand concrete containing stone nano-powder through advanced machine learning techniques

  • Manish Kewalramani;Hanan Samadi;Adil Hussein Mohammed;Arsalan Mahmoodzadeh;Ibrahim Albaijan;Hawkar Hashim Ibrahim;Saleh Alsulamy
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.375-394
    • /
    • 2024
  • The extensive utilization of concrete has given rise to environmental concerns, specifically concerning the depletion of river sand. To address this issue, waste deposits can provide manufactured-sand (MS) as a substitute for river sand. The objective of this study is to explore the application of machine learning techniques to facilitate the production of manufactured-sand concrete (MSC) containing stone nano-powder through estimating the splitting tensile strength (STS) containing compressive strength of cement (CSC), tensile strength of cement (TSC), curing age (CA), maximum size of the crushed stone (Dmax), stone nano-powder content (SNC), fineness modulus of sand (FMS), water to cement ratio (W/C), sand ratio (SR), and slump (S). To achieve this goal, a total of 310 data points, encompassing nine influential factors affecting the mechanical properties of MSC, are collected through laboratory tests. Subsequently, the gathered dataset is divided into two subsets, one for training and the other for testing; comprising 90% (280 samples) and 10% (30 samples) of the total data, respectively. By employing the generated dataset, novel models were developed for evaluating the STS of MSC in relation to the nine input features. The analysis results revealed significant correlations between the CSC and the curing age CA with STS. Moreover, when delving into sensitivity analysis using an empirical model, it becomes apparent that parameters such as the FMS and the W/C exert minimal influence on the STS. We employed various loss functions to gauge the effectiveness and precision of our methodologies. Impressively, the outcomes of our devised models exhibited commendable accuracy and reliability, with all models displaying an R-squared value surpassing 0.75 and loss function values approaching insignificance. To further refine the estimation of STS for engineering endeavors, we also developed a user-friendly graphical interface for our machine learning models. These proposed models present a practical alternative to laborious, expensive, and complex laboratory techniques, thereby simplifying the production of mortar specimens.