• Title/Summary/Keyword: Computer Application

Search Result 7,943, Processing Time 0.111 seconds

A Study on the development of elementary school SW·AI educational contents linked to the curriculum(camp type) (교육과정과 연계된 초등학교 캠프형 SW·AI교육 콘텐츠 개발에 관한 연구)

  • Pyun, YoungShin;Han, JungSoo
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.6
    • /
    • pp.49-54
    • /
    • 2022
  • Rapid changes in modern society after the COVID-19 have highlighted artificial intelligence talent as a major influencing factor in determining national competitiveness. Accordingly, the Ministry of Education planned a large-scale SW·AI camp education project to develop the digital capabilities of 4th to 6th grade elementary school students and middle and high school students who are in a vacuum in artificial intelligence education. Therefore, this study aims to develop a camp-type SW·AI education program for students in grades 4-6 of elementary school so that students in grades 4-6 of elementary school can acquire basic knowledge in artificial intelligence. For this, the meaning of SW·AI education in elementary school is defined and SW·AI contents to be dealt with in elementary school are: understanding of SW AI, 'principle and application of SW AI', and 'social impact of SW AI' was set. In addition, an attempt was made to link the set elements of elementary school SW AI education and learning with related subjects and units of textbooks currently used in elementary schools. As for the program used for education, entry, a software coding learning tool based on block coding, is designed to strengthen software programming basic competency, and all programs are designed to be operated centered on experience and experience-oriented participants in consideration of the developmental characteristics of elementary school students. In order for SW·AI education to be organized and operated as a member of the regular curriculum, it is suggested that research based on the analysis of regular curriculum contents and in-depth analysis of SW·AI education contents is necessary.

Development of a Tree Ring Measuring Program Using Smartphone-Captured Images (스마트폰 촬영 이미지를 활용한 나이테 검출 및 분석 프로그램 개발)

  • Kim, Dong-Hyeon;Kim, Tae-Lee;Cho, Hyung-Joo;Kim, Dong-Geun
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.4
    • /
    • pp.484-491
    • /
    • 2020
  • In this study, to solve the existing inefficient stem analysis process and expensive equipment cost problems, a method for detecting and analyzing tree rings using smartphone images was proposed and a semi-automated computer program (TRIO, Tree Ring Information) was developed. TRIO can measure the annual ring radius and save the results to Excel. Since TRIO uses smartphone images, the results may vary depending on the quality of the smartphone camera. Therefore, using the Samsung Galaxy S10 and Tap 2, 30 dics images of Pinus rigida were acquired and analyzed, and these were compared with WinDENDROTM. As a result of the study, both Samsung Galaxy S10 and S2 showed significant results with WinDENDROTM, and the R2 value of S10 had a high correlation as 0.976, and RMSE was analyzed as 0.4199, and very similar results were output. The R2 value of S2 was 0.975 and the RMSE was 0.4232, showing no significant difference from S10. Accordingly, the TRIO developed in this study analyzed the annual radius value very similar to WinDENDROTM.

Shared Key and Public Key based Mobile Agent Authentication Scheme supporting Multiple Domain in Home Network Environments (홈 네트워크 환경에서 다중 도메인을 지원하는 공유키 및 공개키 기반의 이동 에이전트 인증 기법)

  • 김재곤;김구수;엄영익
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.5
    • /
    • pp.109-119
    • /
    • 2004
  • The home network environment can be defined as a network environment, connecting digital home devices such as computer systems, digital appliances, and mobile devices. In this kind of home network environments, there will be numerous local/remote interactions to monitor and control the home network devices and the home gateway. Such an environment may result in communication bottleneck. By applying the mobile agents that can migrate among the computing devices autonomously and work on behalf of the user, remote interactions and network traffics can be reduced enormously. The mobile agent authentication is necessary to apply mobile agent concept to the home network environments, as a prerequisite technology for authorization or access control to the home network devices and resources. The existing mobile agent systems have mainly used the public key based authentication scheme, which is not suitable to the home network environments, composed of digital devices of limited computation capability. In this paper, we propose a shared key based mobile agent authentication scheme for single home domain and expand the scheme to multiple domain environments with the public key based authentication scheme. Application of the shared key encryption scheme to the single domain mobile agent authentication enables to authenticate the mobile agent with less overhead than the public key based authentication scheme.

Distributed Edge Computing for DNA-Based Intelligent Services and Applications: A Review (딥러닝을 사용하는 IoT빅데이터 인프라에 필요한 DNA 기술을 위한 분산 엣지 컴퓨팅기술 리뷰)

  • Alemayehu, Temesgen Seyoum;Cho, We-Duke
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.12
    • /
    • pp.291-306
    • /
    • 2020
  • Nowadays, Data-Network-AI (DNA)-based intelligent services and applications have become a reality to provide a new dimension of services that improve the quality of life and productivity of businesses. Artificial intelligence (AI) can enhance the value of IoT data (data collected by IoT devices). The internet of things (IoT) promotes the learning and intelligence capability of AI. To extract insights from massive volume IoT data in real-time using deep learning, processing capability needs to happen in the IoT end devices where data is generated. However, deep learning requires a significant number of computational resources that may not be available at the IoT end devices. Such problems have been addressed by transporting bulks of data from the IoT end devices to the cloud datacenters for processing. But transferring IoT big data to the cloud incurs prohibitively high transmission delay and privacy issues which are a major concern. Edge computing, where distributed computing nodes are placed close to the IoT end devices, is a viable solution to meet the high computation and low-latency requirements and to preserve the privacy of users. This paper provides a comprehensive review of the current state of leveraging deep learning within edge computing to unleash the potential of IoT big data generated from IoT end devices. We believe that the revision will have a contribution to the development of DNA-based intelligent services and applications. It describes the different distributed training and inference architectures of deep learning models across multiple nodes of the edge computing platform. It also provides the different privacy-preserving approaches of deep learning on the edge computing environment and the various application domains where deep learning on the network edge can be useful. Finally, it discusses open issues and challenges leveraging deep learning within edge computing.

Fat Client-Based Abstraction Model of Unstructured Data for Context-Aware Service in Edge Computing Environment (에지 컴퓨팅 환경에서의 상황인지 서비스를 위한 팻 클라이언트 기반 비정형 데이터 추상화 방법)

  • Kim, Do Hyung;Mun, Jong Hyeok;Park, Yoo Sang;Choi, Jong Sun;Choi, Jae Young
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.3
    • /
    • pp.59-70
    • /
    • 2021
  • With the recent advancements in the Internet of Things, context-aware system that provides customized services become important to consider. The existing context-aware systems analyze data generated around the user and abstract the context information that expresses the state of situations. However, these datasets is mostly unstructured and have difficulty in processing with simple approaches. Therefore, providing context-aware services using the datasets should be managed in simplified method. One of examples that should be considered as the unstructured datasets is a deep learning application. Processes in deep learning applications have a strong coupling in a way of abstracting dataset from the acquisition to analysis phases, it has less flexible when the target analysis model or applications are modified in functional scalability. Therefore, an abstraction model that separates the phases and process the unstructured dataset for analysis is proposed. The proposed abstraction utilizes a description name Analysis Model Description Language(AMDL) to deploy the analysis phases by each fat client is a specifically designed instance for resource-oriented tasks in edge computing environments how to handle different analysis applications and its factors using the AMDL and Fat client profiles. The experiment shows functional scalability through examples of AMDL and Fat client profiles targeting a vehicle image recognition model for vehicle access control notification service, and conducts process-by-process monitoring for collection-preprocessing-analysis of unstructured data.

A Case Study on the Effect of the Artificial Intelligence Storytelling(AI+ST) Learning Method (인공지능 스토리텔링(AI+ST) 학습 효과에 관한 사례연구)

  • Yeo, Hyeon Deok;Kang, Hye-Kyung
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.5
    • /
    • pp.495-509
    • /
    • 2020
  • This study is a theoretical research to explore ways to effectively learn AI in the age of intelligent information driven by artificial intelligence (hereinafter referred to as AI). The emphasis is on presenting a teaching method to make AI education accessible not only to students majoring in mathematics, statistics, or computer science, but also to other majors such as humanities and social sciences and the general public. Given the need for 'Explainable AI(XAI: eXplainable AI)' and 'the importance of storytelling for a sensible and intelligent machine(AI)' by Patrick Winston at the MIT AI Institute [33], we can find the significance of research on AI storytelling learning model. To this end, we discuss the possibility through a pilot study targeting general students of an university in Daegu. First, we introduce the AI storytelling(AI+ST) learning method[30], and review the educational goals, the system of contents, the learning methodology and the use of new AI tools in the method. Then, the results of the learners are compared and analyzed, focusing on research questions: 1) Can the AI+ST learning method complement algorithm-driven or developer-centered learning methods? 2) Whether the AI+ST learning method is effective for students and thus help them to develop their AI comprehension, interest and application skills.

Object Detection Based on Hellinger Distance IoU and Objectron Application (Hellinger 거리 IoU와 Objectron 적용을 기반으로 하는 객체 감지)

  • Kim, Yong-Gil;Moon, Kyung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.63-70
    • /
    • 2022
  • Although 2D Object detection has been largely improved in the past years with the advance of deep learning methods and the use of large labeled image datasets, 3D object detection from 2D imagery is a challenging problem in a variety of applications such as robotics, due to the lack of data and diversity of appearances and shapes of objects within a category. Google has just announced the launch of Objectron that has a novel data pipeline using mobile augmented reality session data. However, it also is corresponding to 2D-driven 3D object detection technique. This study explores more mature 2D object detection method, and applies its 2D projection to Objectron 3D lifting system. Most object detection methods use bounding boxes to encode and represent the object shape and location. In this work, we explore a stochastic representation of object regions using Gaussian distributions. We also present a similarity measure for the Gaussian distributions based on the Hellinger Distance, which can be viewed as a stochastic Intersection-over-Union. Our experimental results show that the proposed Gaussian representations are closer to annotated segmentation masks in available datasets. Thus, less accuracy problem that is one of several limitations of Objectron can be relaxed.

Comparative Analysis of NDWI and Soil Moisture Map Using Sentinel-1 SAR and KOMPSAT-3 Images (KOMPSAT-3와 Sentinel-1 SAR 영상을 적용한 토양 수분도와 NDWI 결과 비교 분석)

  • Lee, Jihyun;Kim, Kwangseob;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1935-1943
    • /
    • 2022
  • The development and application of a high-resolution soil moisture mapping method using satellite imagery has been considered one of the major research themes in remote sensing. In this study, soil moisture mapping in the test area of Jeju Island was performed. The soil moisture was calculated with optical images using linearly adjusted Synthetic Aperture Radar (SAR) polarization images and incident angle. SAR Backscatter data, Analysis Ready Data (ARD) provided by Google Earth Engine (GEE), was used. In the soil moisture processing process, the optical image was applied to normalized difference vegetation index (NDVI) by surface reflectance of KOMPSAT-3 satellite images and the land cover map of Environmental Systems Research Institute (ESRI). When the SAR image and the optical images are fused, the reliability of the soil moisture product can be improved. To validate the soil moisture mapping product, a comparative analysis was conducted with normalized difference water index (NDWI) products by the KOMPSAT-3 image and those of the Landsat-8 satellite. As a result, it was shown that the soil moisture map and NDWI of the study area were slightly negative correlated, whereas NDWI using the KOMPSAT-3 images and the Landsat-8 satellite showed a highly correlated trend. Finally, it will be possible to produce precise soil moisture using KOMPSAT optical images and KOMPSAT SAR images without other external remotely sensed images, if the soil moisture calculation algorithm used in this study is further developed for the KOMPSAT-5 image.

Blocking Intelligent Dos Attack with SDN (SDN과 허니팟 기반 동적 파라미터 조절을 통한 지능적 서비스 거부 공격 차단)

  • Yun, Junhyeok;Mun, Sungsik;Kim, Mihui
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.1
    • /
    • pp.23-34
    • /
    • 2022
  • With the development of network technology, the application area has also been diversified, and protocols for various purposes have been developed and the amount of traffic has exploded. Therefore, it is difficult for the network administrator to meet the stability and security standards of the network with the existing traditional switching and routing methods. Software Defined Networking (SDN) is a new networking paradigm proposed to solve this problem. SDN enables efficient network management by programming network operations. This has the advantage that network administrators can flexibly respond to various types of attacks. In this paper, we design a threat level management module, an attack detection module, a packet statistics module, and a flow rule generator that collects attack information through the controller and switch, which are components of SDN, and detects attacks based on these attributes of SDN. It proposes a method to block denial of service attacks (DoS) of advanced attackers by programming and applying honeypot. In the proposed system, the attack packet can be quickly delivered to the honeypot according to the modifiable flow rule, and the honeypot that received the attack packets analyzed the intelligent attack pattern based on this. According to the analysis results, the attack detection module and the threat level management module are adjusted to respond to intelligent attacks. The performance and feasibility of the proposed system was shown by actually implementing the proposed system, performing intelligent attacks with various attack patterns and attack levels, and checking the attack detection rate compared to the existing system.

A Study on How to Kill Airborne Bacteria and Viruses in Elementary Schools (초등학교내 공기중 부유세균 및 바이러스 사멸방법에 대한 연구)

  • Lee, Su Yeon;Kim, Chang Soo;Kwak, Eun Mi;Im, Jong Eon;Jeon, Jae Hwan;Kwon, Jun Ho
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.3
    • /
    • pp.566-573
    • /
    • 2022
  • Purpose: This study attempted to verify the effectiveness of the application of air sterilizers in elementary schools at risk of group infection among vulnerable groups in order to address fears of new infectious diseases that have increased since the outbreak of Middle East Respiratory Syndrome (MERS) and Coronavirus infection-19 (COVID-19). Method: One air sterilizer was installed in each classroom, cafeteria, and bathroom of an elementary school in Seoul, and surface and air samples were collected at a distance of 2m from the air sterilizer, and the bacterial reduction effect was analyzed compared to the uninstalled control group. Result: The sterilization effect on the surface was less than 2log CFU/cm2 in both the control group and the test group, and the test group showed 54 to 87% less general bacterial colony formation than the control group. In addition, the sterilization effect in the air differed depending on the location of the air sterilizer, and the wall installation showed a reduction effect of up to 91% compared to the control group, and the central installation showed a reduction effect of up to 93%. Conclusion: As a result of the study, it is expected that the prevention of infectious diseases can be increased by maintaining the current quarantine program in elementary schools that conduct regular disinfection while applying air sterilizers. In addition, it is considered desirable to facilitate the inflow of air into the air sterilizer.