• Title/Summary/Keyword: Computed Tomography, Perfusion Study

Search Result 55, Processing Time 0.029 seconds

Comparison of Predicted Postoperative Lung Function in Pneumonectomy Using Computed Tomography and Lung Perfusion Scans

  • Kang, Hee Joon;Lee, Seok Soo
    • Journal of Chest Surgery
    • /
    • v.54 no.6
    • /
    • pp.487-493
    • /
    • 2021
  • Background: Predicting postoperative lung function after pneumonectomy is essential. We retrospectively compared postoperative lung function to predicted postoperative lung function based on computed tomography (CT) volumetry and perfusion scintigraphy in patients who underwent pneumonectomy. Methods: Predicted postoperative lung function was calculated based on perfusion scintigraphy and CT volumetry. The predicted function was compared to the postoperative lung function in terms of forced vital capacity (FVC) and forced expiratory volume in 1 second (FEV1), using 4 parameters: FVC, FVC%, FEV1, and FEV1%. Results: The correlations between postoperative function and predicted function based on CT volumetry were r=0.632 (p=0.003) for FVC% and r=0.728 (p<0.001) for FEV1%. The correlations between postoperative function and predicted postoperative function based on perfusion scintigraphy were r=0.654 (p=0.002) for FVC% and r=0.758 (p<0.001) for FEV1%. The preoperative Eastern Cooperative Oncology Group (ECOG) scores were significantly higher in the group in which the gap between postoperative FEV1 and predicted postoperative FEV1 analyzed by CT was smaller than the gap analyzed by perfusion scintigraphy (1.2±0.62 vs. 0.4±0.52, p=0.006). Conclusion: This study affirms that CT volumetry can replace perfusion scintigraphy for preoperative evaluation of patients needing pneumonectomy. In particular, it was found to be a better predictor of postoperative lung function for poor-performance patients (i.e., those with high ECOG scores).

Assessment of Cerebral Circulatory Arrest via CT Angiography and CT Perfusion in Brain Death Confirmation

  • Asli Irmak Akdogan;Yeliz Pekcevik;Hilal Sahin;Ridvan Pekcevik
    • Korean Journal of Radiology
    • /
    • v.22 no.3
    • /
    • pp.395-404
    • /
    • 2021
  • Objective: To compare the utility of computed tomography perfusion (CTP) and three different 4-point scoring systems in computed tomography angiography (CTA) in confirming brain death (BD) in patients with and without skull defects. Materials and Methods: Ninety-two patients clinically diagnosed as BD using CTA and/or CTP for confirmation were retrospectively reviewed. For the final analysis, 86 patients were included in this study. Images were re-evaluated by three radiologists according to the 4-point scoring systems that consider the vessel opacification on 1) the venous phase for both M4 segments of the middle cerebral arteries (MCAs-M4) and internal cerebral veins (ICVs) (A60-V60), 2) the arterial phase for the MCA-M4 and venous phase for the ICVs (A20-V60), 3) the venous phase for the ICVs and superior petrosal veins (ICV-SPV). The CTP images were independently reviewed. The presence of an open skull defect and stasis filling was noted. Results: Sensitivities of the ICV-SPV, A20-V60, A60-V60 scoring systems, and CTP in the diagnosis of BD were 89.5%, 82.6%, 67.4%, and 93.3%, respectively. The sensitivity of A20-V60 scoring was higher than that of A60-V60 in BD patients (p < 0.001). CTP was found to be the most sensitive method (86.5%) in patients with open skull defect (p = 0.019). Interobserver agreement was excellent in the diagnosis of BD, in assessing A20-V60, A60-V60, ICV-SPV, CTP, and good in stasis filling (κ: 0.84, 0.83, 0.83, 0.83, and 0.67, respectively). Conclusion: The sensitivity of CTA confirming brain death differs between various proposed 4-point scoring systems. Although the ICV-SPV is the most sensitive, evaluation of the SPV is challenging. Adding CTP to the routine BD CTA protocol, especially in cases with open skull defect, could increase sensitivity as a useful adjunct.

Availability of Positron Emission Tomography-Computed Tomography for the Diagnosis of the Soft Tissue Tumor through Ultrasound-Guided Biopsy (초음파 유도하 침 생검을 이용한 연부조직 종양의 진단에 있어 양전자방출 컴퓨터 단층촬영술의 유용성)

  • Jun, Se Bin;Kim, Jeung Il;Lee, In Sook;Song, You Seon;Choi, Kyung Un
    • Journal of the Korean Orthopaedic Association
    • /
    • v.56 no.5
    • /
    • pp.398-403
    • /
    • 2021
  • Purpose: A biopsy is needed to diagnose soft tissue tumors. However, it is extremely difficult to pinpoint the site of a tumor due to the heterogeneity of sarcomas. Thus, even when an open biopsy is conducted, it is difficult to diagnose a soft tissue tumor. In such cases, an ultrasound (US)-guided biopsy is used to improve the diagnostic accuracy. This study evaluated the accuracy of US-guided biopsy for a diagnosis of soft tissue tumors found initially in a magnetic resonance (MR) perfusion and assessed the availability of positron emission tomography-computed tomography (PET-CT) for a diagnosis of soft tissue tumors. Materials and Methods: From January 2014 to December 2018, the US-guided biopsy was performed on 152 patients with a suspected soft tissue tumor found in an MR perfusion and 86 cases were definitively diagnosed with a soft tissue tumor. The accuracy of the US-guided biopsy was assessed retrospectively. Among the 86 cases, only MR perfusion was used before the biopsy in 50 cases, while both MR perfusion and PET-CT was conducted on 36 cases. The accuracy was analyzed to determine if the PET-CT could improve the precision of a biopsy. Results: From 86 cases, 34 out of 50 cases, in which only MR perfusion had been conducted, matched the result of the definitive diagnosis and the US-guided biopsy. 32 out of 36 cases, in which both PET-CT and MR perfusion were conducted, matched the definitive diagnosis and the US-guided biopsy. These results show significant differences in the accuracy of US-guided biopsy. In the case of soft tissue sarcomas, 6 out of 12 cases, in which only MR perfusion had been conducted, matched the result of the definitive diagnosis and the US-guided biopsy. 17 out of 18 cases, in which both PET-CT and MR perfusion were conducted, matched the definitive diagnosis. Moreover US-guided biopsy also showed significant differences in the accuracy of US-guided biopsy. Conclusion: In diagnosing soft tissue tumors, a US-guided biopsy is a well-known tool for its high accuracy. However, the heterogeneity of sarcoma makes it difficult to locate the exact site for a biopsy using only MR perfusion. Thus, the use of PET-CT will meaningfully improve the accuracy of a diagnosis by precisely targeting the site for the US-guided biopsy.

Perfusion Computed Tomography in Predicting Treatment Response of Advanced Esophageal Squamous Cell Carcinomas

  • Li, Ming-Huan;Shang, Dong-Ping;Chen, Chen;Xu, Liang;Huang, Yong;Kong, Li;Yu, Jin-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.797-802
    • /
    • 2015
  • Background: The purpose of this study was to prospectively evaluate the predictive value of perfusion computed tomography (CT) for response of local advanced esophageal carcinoma to radiotherapy and chemotherapy. Materials and Methods: Before any treatment, forty-three local advanced esophageal squamous cell carcinomas were prospectively evaluated by perfusion scan with 16-row CT from June 2009 to January 2012. Perfusion parameters, including perfusion (BF), peak enhanced density (PED), blood volume (BV), and time to peak (TTP) were measured using Philips perfusion software. Seventeen cases received definitive radiotherapy and 26 received concurrent chemo-radiotherapy. The response was evaluated by CT scan and esophagography. Differences in perfusion parameters between responders and non-responders were analyzed, and ROCs were used to assess predictive value of the baseline parameters for treatment response. Results: There were 25 responders (R) and 18 non-responders (NR). Responders showed significantly higher BF (R:34.1 ml/100g/min vs NR: 25.0 ml/100g/min, p=0.001), BV (23.2 ml/100g vs 18.3 ml/100g, p=0.009) and PED (32.5 HU vs 28.32HU, P=0.003) than non-responders. But the baseline TTP (R: 38.2s vs NR: 44.10s, p=0.172) had no difference in the two groups. For baseline BF, a threshold of 36.1 ml/100g/min achieved a sensitivity of 56%, and a specificity of 94.4% for detection of clinical responders from non-responders. Conclusions: The results suggest that the perfusion CT can provide some helpful information for identifying tumors that may respond to radio-chemotherapy.

Sphenoid Ridge Meningioma Presenting as Acute Cerebral Infarction

  • Ko, Jun Kyeung;Cha, Seung Heon;Choi, Chang Hwa
    • Journal of Korean Neurosurgical Society
    • /
    • v.55 no.2
    • /
    • pp.99-102
    • /
    • 2014
  • A previously healthy 52-year-old man presented to the emergency room with acute onset left hemiparesis and dysarthria. Brain computed tomography and magnetic resonance examinations revealed acute cerebral infarction in the right middle cerebral artery territory and a sphenoid ridge meningioma encasing the right carotid artery terminus. Cerebral angiography demonstrated complete occlusion of the right proximal M1 portion. A computed tomography perfusion study showed a wide area of perfusion-diffusion mismatch. Over the ensuing 48 hours, left sided weakness deteriorated despite medical treatment. Emergency extracranial-intracranial bypass was performed using a double-barrel technique, leaving the tumor as it was, and subsequently his neurological function was improved dramatically. We present a rare case of sphenoid ridge meningioma causing acute cerebral infarction as a result of middle cerebral artery compression.

Associations between Brain Perfusion and Sleep Disturbance in Patients with Alzheimer's Disease

  • Im, Jooyeon J.;Jeong, Hyeonseok S.;Park, Jong-Sik;Na, Seung-Hee;Chung, Yong-An;Yang, YoungSoon;Song, In-Uk
    • Dementia and Neurocognitive Disorders
    • /
    • v.16 no.3
    • /
    • pp.72-77
    • /
    • 2017
  • Background and Purpose Although sleep disturbances are common and considered a major burden for patients with Alzheimer's disease (AD), the fundamental mechanisms underlying the development and maintenance of sleep disturbance in AD patients have yet to be elucidated. The aim of this study was to examine the correlation between regional cerebral blood flow (rCBF) and sleep disturbance in AD patients using technetium-99m hexamethylpropylene amine oxime single-photon emission computed tomography (SPECT). Methods A total of 140 AD patients were included in this cross-sectional study. Seventy patients were assigned to the AD with sleep loss (SL) group and the rest were assigned to the AD without SL group. SL was measured using the sleep subscale of the Neuropsychiatric Inventory. A whole-brain voxel-wise analysis of brain SPECT data was conducted to compare the rCBF between the two groups. Results The two groups did not differ in demographic characteristics, severity of dementia, general cognitive function, and neuropsychiatric symptoms, with the exception of sleep disturbances. The SPECT imaging analysis displayed decreased perfusion in the bilateral inferior frontal gyrus, bilateral temporal pole, and right precentral gyrus in the AD patients with SL group compared with the AD patients without SL group. It also revealed increased perfusion in the right precuneus, right occipital pole, and left middle occipital gyrus in the AD with SL group compared with the AD without SL group. Conclusions The AD patients who experienced sleep disturbance had notably decreased perfusion in the frontal and temporal lobes and increased rCBF in the parietal and occipital regions. The findings of this study suggest that functional alterations in these brain areas may be the underlying neural correlates of sleep disturbance in AD patients.

Quantitative gated myocardial perfusion SPECT (정량적 게이트 심근관류 SPECT)

  • Ahn, Byeong-Cheol
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.4
    • /
    • pp.207-218
    • /
    • 2003
  • Myocardial perfusion imaging has been increasingly used to provide prognostic data and guidance on the choice of appropriate management of patients with known or suspected coronary artery disease. The electrocardiogram gated myocardial SPECT program is corning into wide use with an advent of $^{99m}Tc-labeled$ tracers and an improvement of SPECT machines. The gated technique permits measurement of important cardiac prognostic indicators without any further discomforts or radiation burden in patients underwent standard myocardial perfusion SPECT. In addition, gated study significantly improves diagnostic yield by reducing the number of borderline interpretations and could find myocardial stunning and viable myocardium. Gated single photon emission computed tomography (SPECT) imaging allows the automated calculation of end-diastolic volume, end-systolic volume, ejection fraction, myocardial mass and the assessment of regional wall motion and thickening, and it have dramatically improved assessment of coronary artery disease in routine nuclear practice. This allows the simultaneous assessment of both perfusion and function within the same acquisition, and serves as a cost-effective technique for providing more diagnostic data with fewer diagnostic tests. Because the diagnostic and prognostic power derived from knowledge of left ventricular function can be added to that provided by assessing myocardial perfusion, gated SPECT imaging has rapidly gained widespread acceptance and is now used on a routine clinical basis in a growing number of laboratories, including South Korea. The gated SPECT technique for measurement of left ventricular parameters has been validated against a variety of well established techniques. In this work, overview of gated myocardial perfusion SPECT focus on functional parameters is presented.

Spect Assessment of Regional Cerebral Perfusion Abnormality in Head Injury (두부외상 환자에서 HMPAO-SPECT를 이용한 국소 뇌혈류 변화의 평가)

  • Lee, Kyung-Han;Kim, Chul-Hee;Chang, Ha-Sung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.26 no.2
    • /
    • pp.235-243
    • /
    • 1992
  • Patterns of abnormality in regional cerebral perfusion and its relation to clinical severity was evaluated with 32 head injury patients using $^{99m}Tc-HMPAO$ single photon emission tomography (SPECT). The findings were compared with computed tomography (CT) done within 48 hours of each SPECT study. The initial SPECT study was done within 7 days of injury in 16 cases, between 1 week and 2 months in 12, and after over 2 months in 4. Nineteen of the patients underwent followup SPECT and CT after a mean interval of 1 to 2 months. The initial SPECT showed abnormalities in 96% (31/32) of the patients while CT showed abnormal findings in only 81% (26/32). There were a total of 54 supratentorial SPECT lesions in all. Ninity percent (49/54) of these were of regional hypoperfusion, while 5 lesions showed focal hyperperfusion. The lesions were most often localized in the frontal and temporal lobes. Fifty five percent (30/54) were areas not detected as a lesion on CT. Cerebellar diaschisis was observed in 50% (16/32) of the patients. The degree of perfusion abnormality was quantified by the product of differential activity and a size factor. Correlation between the degree of perfusion abnormality and the clinical severity (Glasgow coma scale) failed to show statistical significance (p=0.053). The amount of change in the degree of perfusion abnormality on follow up SPECT was compared to the amount of change in clinical severity. Perfusion abnormality showed a tendancy to improve in most patients, and the degree of improvement showed significant correlation with the amount of clinical improvement (p < 0.01).

  • PDF

Clinical Application of Acute Ischemic Stroke in Perfusion Computed Tomography (초급성 허혈성 뇌졸중에서 관류 전산화단층촬영의 임상적 적용에 대한 연구)

  • Lee, Jong-Seok;Yoo, Beong-Gyu;Kweon, Dae-Cheol
    • Progress in Medical Physics
    • /
    • v.18 no.3
    • /
    • pp.149-160
    • /
    • 2007
  • Recent advent of 64-multidetctor (MD) CT enables more coverage of Z-axis in the perfusion imaging. The purpose of this study was to evaluate the clinical usefulness of perfusion CT by using 64-MD CT in detecting the lesion in patients with acute stroke. The perfusion CT was performed by using 64-MD CT in 62 consecutive patients who were initially suspected to have subacute ischemic stroke symptoms during the period of recent 9 months. These patients had subacute stroke (n=62). CT scanning was conducted with Jog Mode which provided 16 imaging slices with 5 mm of slice thickness, and 8 cm of coverage in Z-axis. Scan interval was 1 seconds for each imaging slice and total 15 scans were repeated. After CT scanning, perfusion maps (CBV, CBF, MTT and TTP) were created at Extended Brilliance Workstation. The CBV and CBF maps showed that lesions were smaller images. While on the MTT and TTP map lesions were seen to be larger fifty-one were large than they appeared on these images. Two slices of perfusion maps obtained at the level of the basal ganglia were chosen to simulate conventional older perfusion CT with 8 cm of coverage in Z-axis. TTP and MTT maps may be clinically useful for evaluation of the penumbral zone in cases of aubacute cerebral ischemic stroke. The perfusion CT is useful in the assessment of acute stroke as an initial imaging modality.

  • PDF

Dynamic Computed Tomography based on Spatio-temporal Analysis in Acute Stroke: Preliminary Study (급성 뇌졸중 환자의 시공간 분석 기법을 이용한 동적 전산화 단층 검사: 예비 연구)

  • Park, Ha-Young;Pyeon, Do-Yeong;Kim, Da-Hye;Jung, Young-jin
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.543-547
    • /
    • 2016
  • Acute stroke is a one of common disease that require fast diagnosis and treatment to save patients life. however, the acute stroke may cause lifelong disability due to brain damage with no prompt surgical procedure. In order to diagnose the Stroke, brain perfusion CT examination and possible rapid implementation of 3D angiography has been widely used. However, a low-dose technique should be applied for the examination since a lot of radiation exposure to the patient may cause secondary damage for the patients. Therefore, the degradation of the measured CT images may interferes with a clinical check in that blood vessel shapes on the CT image are significantly affected by gaussian noise. In this study, we employed the spatio-temporal technique to analyze dynamic (brain perfusion) CT data to improve an image quality for successful clinical diagnosis. As a results, proposed technique could remove gaussian noise successfully, demonstrated a possibility of new image segmentation technique for CT angiography. Qualitative evaluation was conducted by skilled radiological technologists, indicated significant quality improvement of dynamic CT images. the proposed technique will be useful tools as a clinical application for brain perfusion CT examination.