• Title/Summary/Keyword: Computed Radiography System

Search Result 79, Processing Time 0.091 seconds

Comparison of Non-Destructive Testing Images using $^{192}Ir$ and $^{75}Se$ with Computed Radiography System (Computed Radiography 시스템에 $^{192}Ir$$^{75}Se$ 동위원소를 적용하여 촬영한 비파괴검사 영상 비교)

  • Kang, Sang-Mook;Chol, Chang-Il;Lee, Seung-Kyu;Park, Sang-Ki;Kim, Yong-Kyun
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.1
    • /
    • pp.26-33
    • /
    • 2010
  • A computed Radiography (CR) system by use of reusable Image Plate (IP) offers a convenient and reliable way to replace a conventional film-screen system for NDT (non-destructive testing) field. The quality of a radiography to detect a defect of welded objects depends on the procedure embracing several factors such as measurement conditions, image plate type/class, radiation energy, radiation type, and source to image plate distance. Also, the ability of images to detect a flaw reduces with increasing object thickness. In the study, the properties of gamma ray source were summarized for NDT field and inspection images of CR image system manufactured by FUJI were acquired using $^{75}Se$ and $^{192}Ir$ with welded objects. We analyzed the gray scale of hole defect image by using XCAP image processing program and calculated the image contrast and SNR in definition. Also the sesitivities of image quality indicator(IQI) were calculated for hot and cooling tube image of $^{75}Se$ and $^{192}Ir$.

Contrast-Detail Phantom을 이용한 CR에서 Image Plate의 사용 횟수에 따른 Contrast-Detail Curve의 변화

  • Lee, Seung-Cheol;Park, Jang-Heum;Kim, Jae-Dong;Park, Chang-Hyeon
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.7 no.1
    • /
    • pp.7-13
    • /
    • 2005
  • Purpose : Image plate (IP) is substituted for film in computed radiography. This study is to investigate into a variation of contrast and detail by the number used of image plate in computed radiography. Materials and Methods : A Contrast-Detail(CD)-RAD 2.0 phantom(Nijmegen hospital, The Netherlands) was used for this study. The computed radiography(CR) CD-RAD phantom images were acquired at 40 kVp, 160 mA, 1.6 mAs, and small focus with the Shimadzu general radiography UD-150B-10 system and Fuji FCR 5000 image process system with speed of 200. The IP used including once, 5000 times, and 10000 times also was used. The numerical value of image quality figures (IQF) was produced by CD-RAD analyser(the program is installed in the directory), and then contrast-detail curve was drawn. Results : In this study, the value of IQF was 3.53 in IP used once, 3.40 in 5000 times, and 3.22 in 10000 times. Conclusions : There was a variation of contrast-detail curve by the number used of IP with contrast-detail phantom in computed radiography. Therefore, it is necessary that the IP with lower IQF and a shift of contrast-detail curve to the lower left part is used.

  • PDF

Evaluation of the Chest Radiography using Fuji Computed Radiography(FCR) System (Fuji Computed Radiography(FCR)를 이용한 흥부 X선사진의 평가)

  • Kim, Young-Sung;Kwang, Nam-Sun;Yeo, Young-Bok;Huh, Joon
    • Journal of radiological science and technology
    • /
    • v.14 no.2
    • /
    • pp.9-14
    • /
    • 1991
  • Chest radiograms obtained by using Fuji Computed Radiography(FCR) system were compared to conventional film/screen radiograms. The FCR images showed better image quality in diagnostic informations than the conventional chest images. In FCR, the radiation exposure to patient for chest examination could be reduced up to one tenths of conventional chest examination. The main advantages or FCR were considered to depend on the contrast processing and frequency processing properties. The use of FCR in clinical work may improve both diagnostic quality and radiation exposure.

  • PDF

Study of Image Properties for Computed Radiography (Computed Radiography의 영상특성에 관한 연구)

  • Ryu, Ki-Hyun;Jung, Jae-Eun
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.10 no.2
    • /
    • pp.23-31
    • /
    • 2008
  • Computed radiography(CR) has been widely used in the field of diagnostic radiography since digital X-ray image was introduced. The imaging performance of CR system was studied by analyzing the digital image data of the CR images which are the outcomes of the whole imaging system composed of image plate(IP), laser digitizer, analoge-digital convertor, and a given image processing unit. In this study, we used a conventional CR system made by Agfa. From the flat field image of 150$\times$150 image pixels, signal-to-noise ratio(SNR) was calculated. SNR of the CR image increases in proportion to logarithm value of the X-ray exposure irradiated on the IP. SNR is less than about 6 at the exposure below 0.2mR and is more than 10 at the exposure above 0.54mR. In our study, most of images obtained by the smaller exposures less than 2.0mR can not be readable. In general, the minimum value of the SNR ranges from 3 to 5. We obtained modulation transfer function(MTF) by analyzing the bar pattern image which was made under conditions as follows: X-ray tube potential was 55kVp, the IP exposure was 0.54 mR, and the distance between X-ray source to IP was 2m, where bar pattern was located on the IP. MTF is 23% at 2.5lp/mm spatial frequency. Provided that the MTF of noise equivalent modulation is 10%, the CR system has the limiting spatial resolution of 3.2lp/mm. If the image sharpness is evaluated by the spatial frequency where MTF is 50%. the corresponding spatial frequency is 0.5$\sim$0.75lp/mm. MTFA(Modulation Transfer Function Area) is 1.0lp/mm. Compared with the Fuji CR whose MTFA is 1.1lp/mm, Agfa CR in this study shows almost same MTFA performance.

  • PDF

Application of Computed Radiography for Nondestructive Testing of Boiler Tube Weldments (보일러튜브 용접부 비파괴검사를 위한 컴퓨터화 방사선투과시험 적용 연구)

  • Park, S.K.;Ahn, Y.S.;Gil, D.S.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.95-102
    • /
    • 2009
  • A steam generator (boiler) in thermal power plants, consisting of more than 30,000 parts and components, can lead to the plant shutdown with damage to even the small part of the components; esp., like weld failures on boiler tubes. Consequently it is greatly demanded to improve the quality of the weld on the boiler tube for the stable operation of the power plants. Because of the feature of the welding, which is done past by melting the work pieces and adding a filler material that cools to become a strong coalescence, there is a great possibility that weld failures take place. As a result, it is regulated to make a non-destructive testing, like radiography test, to detect defects and flaws in the weld. The current film radiography test provides a lower image quality exceeding 2.0% of a basic quality level for a penetrameter, it is very likely to fail to detect micro defect. As a result, the prevention for the boiler tube failure has not been made effectively. In this study, computed radiography technology has been applied as a digital radiography test to the boiler tube weld, and Se-75 radiation source was used to improve the image quality, instead of Ir-192 source. As a result of this study, it is proven to save the time and cost for test and to enhance the quality level of penetrameter penetrating image, which enables to upgrade the quality of radiography test to the boiler tube weld.

  • PDF

Evaluation of cadmium ratio for conceptual design of a cyclotron-based thermal neutron radiography system

  • Kuo, Weng-Sheng
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2572-2578
    • /
    • 2022
  • An approximate method for calculating the cadmium ratio of a cyclotron-based thermal neutron radiography system was developed. In this method, the Monte-Carlo code, MCNP6.2, was employed to calculate the neutron capture rates of Au-197, and the cadmium ratio was obtained by computing the ratio of neutron capture rates. From the simulation results, the computed cadmium ratio is reasonably acceptable, and the assumption of ignoring the fast neutron contribution to the cadmium ratio is valid.

The Study on image correction of geometric distortion in digital radiography image (방사선투과영상의 기하학적 왜곡 보정에 관한 연구)

  • Park, S.K.;Ahn, Y.S.;Gil, D.S.
    • Journal of Power System Engineering
    • /
    • v.15 no.4
    • /
    • pp.25-30
    • /
    • 2011
  • This study is made to provide with a method for correcting the geometric distortion of the digital radiography image by analytical approach based upon the inverse square law and Beer's law. This study is aimed to find out and improve a mathematic model of nonlinear type. Variations in the alignment of the X-ray source, the object, and imaging plate affect digital radiography images. A model which is expressed in parameter values; e.g, angle, position, absorption coefficient, length, width and pixel account of radiography source, is developed so as to match the sample image. For the best correction of the digital image that is the most similar to the model image, a correction technique based upon tangent is developed; then applied to the digital radiography images of steel tubes. As a result, the image correction is confirmed to be made successfully.

Comparison of cone beam computed tomography and conventional panoramic radiography in assessing the topographic relationship between the mandibular canal and impacted third molars (하악 제3대구치와 하악관과의 위치관계에 대한 파노라마 방사선사진과 cone beam형 전산화단층촬영상의 비교)

  • Choi, Hyung-Soo;Kim, Gyu-Tae;Choi, Yong-Suk;Hwang, Eui-Hwan
    • Imaging Science in Dentistry
    • /
    • v.38 no.3
    • /
    • pp.169-176
    • /
    • 2008
  • Purpose : To assess the diagnostic accuracy and value in an imaging technique field through the comparison of cone beam computed tomography and conventional panoramic radiography in assessing the topographic relationship between the mandibular canal and impacted third molars. Materials and Methods : Participants consisted of 100 patients offered the images through cone beam computed tomography and panoramic radiography. PSR-$9000^{TM}$ Dental CT system (Asahi Roentgen Ind. Co., Ltd, Japan) was used as the unit of cone beam computed tomography. CE-II (Asahi Roentgen Ind. Co., Ltd, Japan) and Pro Max (Planmeca Oy, Finland) were used as the unit of panoramic radiography. The images obtained through panoramic radiography were classified into 3 types according to the distance between mandibular canal and root of mandibular third molar. And they were classified into 4 types according to the proximity of radiographic feature. The images obtained through cone beam computed tomography based on the classification above were classified into 4 types according to the location between the mandibular canal and the root and were analyzed. And they were classified into buccal, inferior, lingual, and between roots, according to the location between mandibular canal and root. The data were statistically analyzed and estimated by $X^2$-test. Results : 1. There was no statistical significance according to 3 types (type I, type II, type III) through CBCT. 2. The results of 4 types (type A, type B, type C, type D) through CBCT were as high prevalence of CBCT 1 in type A, CBCT 2 in type B, CBCT 3 in type C, and CBCT1 in type D and those of which showed statistical significance (P value=0.03). 3. The results according to location between mandibular canal and root through CBCT recorded each 49, 25, 17, 9 as buccal, inferior, lingual, between roots. Conclusion : When estimating the mandibular canal and the roots through the panoramic radiography, it could be difficult to drive the views of which this estimation was considerable. Thus it is required to have an accurate diagnostic approaching through CBCT that could estimate the location between mandibular canal and roots.

  • PDF

Comparison of the Modulation Transfer Function of Several Image Plate (Image Plate(IP) 영상의 MTF 비교)

  • Kim, Chang-Bok;Lee, Yang-Sup;Kim, Young-Keun;Lee, Seong-Kil;Lee, Kyung-Sup
    • Journal of radiological science and technology
    • /
    • v.27 no.3
    • /
    • pp.25-29
    • /
    • 2004
  • Among the digital radiography systems, the computed radiography Image Plate Detector System is most frequently being used for the general radiography and also this system commonly diffracts the x-ray images since it is the system that is influenced by the light diffusion from the fluorescent substances. In this study, by using the X-ray Generator, a comparative analysis has been made between 2 different models of computer radiography image plate investigate each model's resolution and sharpness through the modulation transfer function(MTF) measurement. For the analysis, two image plates for general radiography one Fuji ST-VN model(more than 3years old) and one Fuji ST-VL model(less than 2years old) that are currently being used in "Hospital A" were sampled for the MTF measurement here. As the experimental method for this study, the resolution chart method has been carried out by using X-ray generator. Also all the experimental data were printed out by laser printer and measured by microdensitometer. As the results of the experiment carried out in this study, some differences have been found between the two different IP models and Fuji ST-VL has shown its excellence in both of the resolution and the sharpness fields.

  • PDF

Evaluation the absorbed dose in brain of dental radiography (치과방사선 검사에서 두부(brain)의 흡수선량 평가)

  • Jeon, Woon-Sun;Han, Dong-Kyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.6
    • /
    • pp.343-349
    • /
    • 2011
  • This study was aimed to evaluate the absorbed dose in brain of dental radiography. For radiographic exposure, PLD(photoluminescence dosimetry) chips placed in Rando phantom to measurement the absorbed dose to pituitary gland, orbit, maxillary sinus and submandibular glands, thyroid gland, esophagus. Equipments were used Kodak 2200, Kodak 8000C dental radiographic systems and computed tomography(Lightspeed VCT). The absorbed doses were measured at the same exposure parameters and distance by the clinical factor(kV, mA, sec). The result were as follows ; The absorbed dose for intra-oral radiography were 0.02~2.47cGy, the greatest absorbed dose was 2.47cGy for thyroid gland in maxillary right molar projection. the lowest adsorbed dose was 0.02cGy for submandibular glands in lower anterior projection. The absorbed dose for extra-oral radiography were 0.36~3.44cGy of cephalometric method, 0.14~12.82cGy of panoramic method, 8.17~253.63cGy of computed tomography, the greatest adsorbed dose was 253.63cGy for submandibular glands in maxillary CT scan. the lowest adsorbed dose was 0.14cGy for orbit in panoramic method. As a result, extra-oral radiography was measured more than intra-oral radiography. In particular, method which used computed tomography was measured more than 100 times than intra-oral radiography highly. Therefore, you must show a guideline in extra-oral radiography and an effort to reduce absorbed dose is demanded.