• Title/Summary/Keyword: Computed Fluid Method

Search Result 190, Processing Time 0.029 seconds

Economic optimization and dynamic analysis of nanocomposite shell conveying viscous fluid exposed to the moving load based on DQ-IQ method

  • Ali Chen;Omidreza Masoudian;Gholamreza Soleimani Jafari
    • Structural Engineering and Mechanics
    • /
    • v.91 no.6
    • /
    • pp.567-581
    • /
    • 2024
  • In this paper, an effort is made to present a detailed analysis of dynamic behavior of functionally graded carbon nanotube-reinforced pipes under the influence of an accelerating moving load. Again, the material properties of the nanocomposite pipe will be determined by following the rule of mixtures, considering a specific distribution and volume fraction of CNTs within the pipe. In the present study, temperature-dependent material properties have been considered. The Navier-Stokes equations are used to determine the radial force developed by the viscous fluid. The structural analysis has been carried out based on Reddy's higher-order shear deformation shell theory. The equations of motion are derived using Hamilton's principle. The resulting differential equations are solved using the Differential Quadrature and Integral Quadrature methods, while the dynamic responses are computed with the use of Newmark's time integration scheme. These are many parameters, ranging from those connected with boundary conditions to nanotube geometrical characteristics, velocity, and acceleration of the moving load, and, last but not least, volume fraction and distribution pattern of CNTs. The results indicate that any increase in the volume fraction of CNTs will lead to a decrease in the transient deflection of the structure. It is also observed that maximum displacement occurs with an increase in the load speed, slightly delayed compared to decelerating motion.

Numerical analysis of an offshore platform with large partial porous cylindrical members due to wave forces

  • Park, Min-Su;Kawano, Kenji;Nagata, Shuichi
    • Ocean Systems Engineering
    • /
    • v.1 no.4
    • /
    • pp.337-353
    • /
    • 2011
  • In the present study, an offshore platform having large partial porous cylindrical members, which are composed of permeable and impermeable cylinders, is suggested. In order to calculate the wave force on large partial porous cylindrical members, the fluid domain is divided into three regions: a single exterior region, N inner regions and N beneath regions, and the scattering wave in each fluid region is expressed by an Eigen-function expansion method. Applying Darcy's law to the porous boundary condition, the effect of porosity is simplified. Wave excitation forces and wave run up on the structures are presented for various wave conditions. For the idealized three-dimensional platform having large partial porous cylindrical members, the dynamic response evaluations of the platform due to wave forces are carried out through the modal analysis. In order to examine the effects of soil-structure interaction, the substructure method is also applied. The displacement and bending stress at the selective nodal points of the structure are computed using various input parameters, such as the shear-wave velocity of soil, the wave height and the wave period. Applying the Monte Carlo Simulation (MCS) method, the reliability evaluations at critical structure members, which contained uncertainties caused by dynamic forces and structural properties, are examined by the reliability index with the results obtained from MCS.

Numerical Prediction of Ship Motions in Wave using RANS Method (RANS 방법을 이용한 파랑 중 선박운동 해석)

  • Park, Il-Ryong;Kim, Jin;Kim, Yoo-Chul;Kim, Kwang-Soo;Van, Suak-Ho;Suh, Sung-Bu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.4
    • /
    • pp.232-239
    • /
    • 2013
  • This paper provides the structure of a Reynolds Averaged Navier-Stokes(RANS) based simulation method and its validation results for the ship motion problem. The motion information of the hull computed from the equations of motion is considered in the momentum equations as the relative fluid motions with respect to a non-inertial coordinates system. A finite volume method is used to solve the governing equations, while the free surface is captured by using a two-phase level-set method and the realizable k-${\varepsilon}$ model is used for turbulence closure. For the validation of the present numerical approach, the numerical results of the resistance and motion tests for DTMB 5415 at two ship speeds are compared against available experimental data.

Computation of Viscous Flows around a Two-dimensional Oscillating Airfoil ( Part 2. with Dynamic Stall ) (진동하는 2차원 날개 단면 주위에 대한 점성 유동장 계산( Part 2. 동적실속이 발생하는 경우 ))

  • Lee, Pyoung-Kuk;Kim, Hyoung-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.1 s.151
    • /
    • pp.16-25
    • /
    • 2007
  • Studies of unsteady-airfoil flows have been motivated mostly by efforts to avoid. or reduce such undesirable effects as flutter, noise and vibrations, dynamic stall. In this paper, we carry out a computational study of viscous flows around a two-dimensional oscillating airfoil to investigate unsteady effects in these important and challenging flows. A fully implicit incompressible RANS solver has been used for calculating unsteady viscous flows around an airfoil. The cell-centered End order finite volume method is utilized to discretize governing equations. in order to ease the flow computation for fluid region changing in time, improve the qualify of solution and simplify the grid generation for an oscillating airfoil flow, the computational method adopts a moving and deforming grid generation technique based on the multi-block grid topology. The numerical method is applied for calculating viscous flows of an oscillating NACA 0012 in uniform flow. The computational results are compared with available experimental data. Computed results are compared with experimental data and flow characteristics of the experiment are reproduced well In the computed results.

Development of a High Accuracy Pure Upwind Difference Scheme (고차 정확도의 순수 상류 차분법의 개발)

  • Cho Ji Ryong
    • Journal of computational fluids engineering
    • /
    • v.4 no.1
    • /
    • pp.8-18
    • /
    • 1999
  • In devising a numerical approximation for the convective spatial transport of a fluid mechanical quantity, it is noted that the convective motion of a scalar quantity occurs in one-way, or from upstream to downstream. This consideration leads to a new scheme termed a pure upwind difference scheme (PUDS) in which an estimated value for a fluid mechanical quantity at a control surface is not influenced from downstream values. The formal accuracy of the proposed scheme is third order accurate. Two typical benchmark problems of a wall-driven fluid flow in a square cavity and a buoyancy-driven natural convection in a tall cavity are computed to evaluate performance of the proposed method. for comparison, the widely used simple upwind scheme, power-law scheme, and QUICK methods are also considered. Computation results are encouraging: the proposed PUDS sensitized to the convection direction produces the least numerical diffusion among tested convection schemes, and, notable improvements in representing recirculation of fluid stream and spatial change of a scalar. Although the formal accuracy of PUDS and QUICK are the same, the accuracy difference of approximately a single order is observed from the revealed results.

  • PDF

Vibration Characteristics of a Curved Pipe Conveying Fluid with the Geometric Nonlinearity (기하학적 비선형성을 갖는 유체를 수송하는 곡선관의 진동 특성)

  • Jung, Du-Han;Chung, Jin-Tai
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.793-798
    • /
    • 2004
  • The vibration of a curved pipe conveying fluid is studied when the pipe is clamped at both ends. To consider the geometric nonlinearity, this study adopts the Lagrange strain theory for large deformation and the extensible dynamics based on the Euler-Bernoulli beam theory for slenderness assumption. By using the extended Hamilton principle, the non-linear partial differential equations are derived for the in-plane motions of the pipe. The linear and non-linear terms in the governing equations are compared with those in the previous study, and some significant differences are discussed. To investigate the vibration characteristics of the system, the discretized equations of motion are derived from the Galerkin method. The natural frequencies varying with the flow velocity are computed from the two cases, which one is the linear problem and the other is the linearized problem in the neighborhood of the equilibrium position. From these results, we should consider the geometric nonlinearity to analyze the dynamics of a curved pipe conveying fluid more precisely.

  • PDF

Analysis of Modulus and Phase of Resonance Scattered Elastic Waves from Cylindrical Fluid Scatterers (원통형 유체 산란체에 의한 공명 산란 탄성파의 진폭 및 위상 해석)

  • 임현준;홍기석;김정태
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.62-70
    • /
    • 2001
  • Based on the recently developed resonance scattering theory for elastic waves, a relationship between the stress components, which may be measured using ultrasonic transducers, of partial waves scattered from cylindrical fluid scatterer, cavity, and resonance scatterer has been derived. The computed resonance scattered stresses exhibit frequency behaviors similar to the corresponding scattering coefficients: particularly, abrupt changes in phase by 180°near the resonant frequencies. By studying the behavior of pressure in the fluid scatterer, the physics of the theory has been further understood. Using the method studied and developed in this paper, nondestructive characterization of fluid inclusions in elastic media is expected to become more reliable.

  • PDF

Unsteady Simulations of the Flow in a Swirl Generator, Using OpenFOAM

  • Petit, Olivier;Bosioc, Alin I.;Nilsson, Hakan;Muntean, Sebastian;Susan-Resiga, Romeo F.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.199-208
    • /
    • 2011
  • This work presents numerical results, using OpenFOAM, of the flow in the swirl flow generator test rig developed at Politehnica University of Timisoara, Romania. The work shows results computed by solving the unsteady Reynolds Averaged Navier Stokes equations. The unsteady method couples the rotating and stationary parts using a sliding grid interface based on a GGI formulation. Turbulence is modeled using the standard k-${\varepsilon}$ model, and block structured wall function ICEM-Hexa meshes are used. The numerical results are validated against experimental LDV results, and against design velocity profiles. The investigation shows that OpenFOAM gives results that are comparable to the experimental and design profiles. The unsteady pressure fluctuations at four different positions in the draft tube is recorded. A Fourier analysis of the numerical results is compared whit that of the experimental values. The amplitude and frequency predicted by the numerical simulation are comparable to those given by the experimental results, though slightly over estimated.

Comparative Study on Efficiencies of Naturally-Ventilated Multi-Span Greenhouses in Korea (다연동 온실의 자연환기효율성 비교 분석)

  • Kwon, Soon-Hong;Jung, Sung-Won;Kwon, Soon-Gu;Park, Jong-Min;Choi, Won-Sik;Kim, Jong-Soon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.1
    • /
    • pp.8-18
    • /
    • 2017
  • This research analyzed the ventilation effect of the multi-span greenhouse based on the types of greenhouse structure, weather conditions, and locations inside the greenhouse. To compare and analyze the ventilation effects with different types of greenhouse, the uniform environmental conditions should be selected in advance. But these factors are not controlled and require tense many precision facilities and labor forces. Thus, the CFD simulation was used for the air stream to be analyzed qualitatively and quantitatively. In addition, for the ventilation effect analysis, the TGD (Tracer Gas Decay) was used to overcome the shortcomings of the current ventilation measurement method. The calculation error of ventilation rate using TGD was low (10.5%). Thus, the TGD is very effective in calculating the ventilation efficiency. The wind direction of 90 degrees showed the best ventilation effect. The ventilation rate also decreased along the air circulation path, and the rate was the lowest around the outlet. The computed fluid method (CFD) turned out to be a power tool for simulating flow behavior in greenhouse.

Aeroelastic analysis of bridges using FEM and moving grids

  • Selvam, R. Panneer;Govindaswamy, S.;Bosch, Harold
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.257-266
    • /
    • 2002
  • In the recent years flow around bridges are investigated using computer modeling. Selvam (1998), Selvam and Bosch (1999), Frandsen and McRobie (1999) used finite element procedures. Larsen and Walther (1997) used discrete vorticity procedure. The aeroelastic instability is a major criterion to be checked for long span bridges. If the wind speed experienced by a bridge is greater than the critical wind speed for flutter, then the bridge fails due to aeroelastic instability. Larsen and Walther (1997) computed the critical velocity for flutter using discrete vortex method similar to wind tunnel procedures. In this work, the critical velocity for flutter will be calculated directly (free oscillation procedure) similar to the approaches reported by Selvam et al. (1998). It is expected that the computational time required to compute the critical velocity using this approach may be much shorter than the traditional approach. The computed critical flutter velocity of 69 m/s is in reasonable comparison with wind tunnel measurement. The no flutter and flutter conditions are illustrated using the bridge response in time.