• Title/Summary/Keyword: Computational imaging system

Search Result 79, Processing Time 0.023 seconds

Computational Approach to Color Overlapped Integral Imaging for Depth Estimation

  • Lee, Eunsung;Lim, Joohyun;Kim, Sangjin;Har, Donghwan;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.6
    • /
    • pp.382-387
    • /
    • 2014
  • A computational approach to depth estimations using a color over lapped integral imaging system is presented. The proposed imaging system acquires multiple color images simultaneously through a single lens with an array of multiple pinholes that are distributed around the optical axis. This paper proposes a computational model of the relationship between the real distance of an object and the disparity among different color images. The proposed model can serve as a computational basis of a single camera-based depth estimation.

Numerical Reconstruction and Pattern Recognition using Integral Imaging

  • Yeom, Seo-Kwon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1131-1134
    • /
    • 2008
  • In this invited paper, numerical reconstruction and pattern recognition using integral imaging are overviewed. The computational integral imaging method reconstructs three-dimensional information at arbitrary depth-levels. Photon-counting nonlinear matched filtering combined with the computational reconstruction provides promising results for the application of low-light level recognition.

  • PDF

Comparisons of Object Recognition Performance with 3D Photon Counting & Gray Scale Images

  • Lee, Chung-Ghiu;Moon, In-Kyu
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.388-394
    • /
    • 2010
  • In this paper the object recognition performance of a photon counting integral imaging system is quantitatively compared with that of a conventional gray scale imaging system. For 3D imaging of objects with a small number of photons, the elemental image set of a 3D scene is obtained using the integral imaging set up. We assume that the elemental image detection follows a Poisson distribution. Computational geometrical ray back propagation algorithm and parametric maximum likelihood estimator are applied to the photon counting elemental image set in order to reconstruct the original 3D scene. To evaluate the photon counting object recognition performance, the normalized correlation peaks between the reconstructed 3D scenes are calculated for the varied and fixed total number of photons in the reconstructed sectional image changing the total number of image channels in the integral imaging system. It is quantitatively illustrated that the recognition performance of the photon counting integral imaging system can be similar to that of a conventional gray scale imaging system as the number of image viewing channels in the photon counting integral imaging (PCII) system is increased up to the threshold point. Also, we present experiments to find the threshold point on the total number of image channels in the PCII system which can guarantee a comparable recognition performance with a gray scale imaging system. To the best of our knowledge, this is the first report on comparisons of object recognition performance with 3D photon counting & gray scale images.

Advances in Damage Visualization Algorithm of Ultrasonic Propagation Imaging System

  • Lee, Jung-Ryul;Sunuwar, Nitam
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.2
    • /
    • pp.232-240
    • /
    • 2013
  • This paper presents recent advances in damage visualization algorithms of laser generated ultrasonic propagation imaging(UPI) system. An effective damage evaluation method is required to extract correct information from raw data to properly characterize anomalies present in structure. A temporal-reference free imaging system provides easy and rapid defect inspection capability with less computational complexity. In this paper a number of methods such as ultrasonic wave propagation imaging(UWPI), anomalous wave propagation imaging(AWPI), ultrasonic spectral imaging(USI), wavelet ultrasonic propagation imaging(WUPI), variable time window amplitude mapping(VTWAM), time point adjustment(TPA), time of flight and amplitude mapping(ToF&Amp) and ultrasonic wavenumber imaging(UWI) are discussed with instances of successful implementation on various structures.

A Comparison of System Performances Between Rectangular and Polar Exponential Grid Imaging System (POLAR EXPONENTIAL GRID와 장방형격자 영상시스템의 영상분해도 및 영상처리능력 비교)

  • Jae Kwon Eem
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.2
    • /
    • pp.69-79
    • /
    • 1994
  • The conventional machine vision system which has uniform rectangular grid requires tremendous amount of computation for processing and analysing an image especially in 2-D image transfermations such as scaling, rotation and 3-D reconvery problem typical in robot application environment. In this study, the imaging system with nonuiformly distributed image sensors simulating human visual system, referred to as Ploar Exponential Grid(PEG), is compared with the existing conventional uniform rectangular grid system in terms of image resolution and computational complexity. By mimicking the geometric structure of the PEG sensor cell, we obtained PEG-like images using computer simulation. With the images obtained from the simulation, image resolution of the two systems are compared and some basic image processing tasks such as image scaling and rotation are implemented based on the PEG sensor system to examine its performance. Furthermore Fourier transform of PEG image is described and implemented in image analysis point of view. Also, the range and heading-angle measurement errors usually encountered in 3-D coordinates recovery with stereo camera system are claculated based on the PEG sensor system and compared with those obtained from the uniform rectangular grid system. In fact, the PEC imaging system not only reduces the computational requirements but also has scale and rotational invariance property in Fourier spectrum. Hence the PEG system has more suitable image coordinate system for image scaling, rotation, and image recognition problem. The range and heading-angle measurement errors with PEG system are less than those of uniform rectangular rectangular grid system in practical measurement range.

  • PDF

Visual Servoing System Based on Space Variant Imaging for Rehabilitation Robots (공간 변화 영상을 이용한 재활로봇의 비쥬얼 서보잉 시스템에 관한 연구)

  • 송원경;이희영;변증남
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.763-768
    • /
    • 1999
  • The space variant imaging system which mimics the human beings visual system has some merits such as wide field-of-view, the low computational cost and the high accuracy in matching of correspondence points of stereo images. In this presentation, a visual servoing system based on the space variant imaging technique is proposed for the control of the rehabilitation robot arm. The position information of an object obtained by space variant imaging techniques is used for the visual servoing. According to the empirical data, the degree of correlation extracted by the space variant imaging technique is more accurate than that of the space invariant imaging technique.

  • PDF

Imaging sub-salt structures (암염돔 하부 구조에 대한 구조보정 연구)

  • Shin, Chang-Soo;Ko, Seung-Won;Seo, Young-Tak;Pyun, Suk-Joon;Kim, Sung-Hoon;Ha, Wan-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.113-117
    • /
    • 2007
  • Sub-salt imaging is an unsolved hot issue in subsurface imaging area. We tested several important properties in imaging sub-salt structures to provide a clue to this problem. Reverse time migration using velocity models obtained by waveform inversion produced better results than that of stacking velocity analysis. Sub-salt imaging results were highly dependent on the size and shape of a salt structure. The results were not clear when the velocity of a salt structure is significantly higher than that of adjacent layers.

  • PDF

A Monitoring System of Energy Usage for Apartment Houses Using Smart TV (스마트TV를 이용한 공동주택의 에너지 사용 모니터링 시스템)

  • Park, Sungsoo;Jin, Younghoon;Nam, Sanghun;Chai, Youngho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.6
    • /
    • pp.451-460
    • /
    • 2013
  • This paper presents the necessary elements and data flow in developing a monitoring system of energy usage for apartment houses with a Smart TV. Energy consumption data in each home are collected and analyzed in the HUB station by way of measuring instruments. And the amount of energy usage, such as electricity, gas, hot water, heating, water and other utilities are displayed through the Smart TV application. Energy consumption Database in the HUB station are processed and displayed in the browser of a Smart TV through XML, JAVASCRIPT and Flash. Smart TV users can get the energy consumption status through the energy consumption analysis display of the Smart TV application and improve the energy efficiency by comparing the usage patterns with neighboring houses. And the application display energy usage information, consumption ranking, rates to user as well. Furthermore, usage of last month or year can be compared to help to reduce the energy usage. The proposed system can provide the information about the amount of energy use to be reduced and the warning on the waste of energy.

Complex Conjugate Resolved Retinal Imaging by One-micrometer Spectral Domain Optical Coherence Tomography Using an Electro-optical Phase Modulator

  • Fabritius, Tapio E.J.;Makita, Shuichi;Yamanari, Masahiro;Myllyla, Risto A.;Yasuno, Yoshiaki
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.111-117
    • /
    • 2011
  • Full-range spectral domain optical coherence tomography (SD-OCT) with a 1-${\mu}m$ band light source is shown here. The phase of the reference beam is continuously stepped while the probing beam scans the sample laterally (B-scan). The two dimensional spectral interferogram obtained is processed by a Fourier transform method to obtain a complex spectrum leading to a full-range OCT image. A detailed mathematical explanation of the complex conjugate resolving method utilized is provided. The system's measurement speed was 7.96 kHz, the measured axial resolution was $9.6{\mu}m$ in air and the maximum sensitivity 99.4 dB. To demonstrate the effect of mirror image elimination, In vivo human eye pathology was measured.

Computational Integral Imaging Reconstruction of a Partially Occluded Three-Dimensional Object Using an Image Inpainting Technique

  • Lee, Byung-Gook;Ko, Bumseok;Lee, Sukho;Shin, Donghak
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.248-254
    • /
    • 2015
  • In this paper we propose an improved version of the computational integral imaging reconstruction (CIIR) for visualizing a partially occluded object by utilizing an image inpainting technique. In the proposed method the elemental images for a partially occluded three-dimensional (3D) object are recorded through the integral imaging pickup process. Next, the depth of occlusion within the elemental images is estimated using two different CIIR methods, and the weight mask pattern for occlusion is generated. After that, we apply our image inpainting technique to the recorded elemental images to fill in the occluding area with reliable data, using information from neighboring pixels. Finally, the inpainted elemental images for the occluded region are reconstructed using the CIIR process. To verify the validity of the proposed system, we carry out preliminary experiments in which faces are the objects. The experimental results reveal that the proposed system can dramatically improve the quality of a reconstructed CIIR image.