• Title/Summary/Keyword: Computational imaging

Search Result 249, Processing Time 0.025 seconds

Complex Conjugate Resolved Retinal Imaging by One-micrometer Spectral Domain Optical Coherence Tomography Using an Electro-optical Phase Modulator

  • Fabritius, Tapio E.J.;Makita, Shuichi;Yamanari, Masahiro;Myllyla, Risto A.;Yasuno, Yoshiaki
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.111-117
    • /
    • 2011
  • Full-range spectral domain optical coherence tomography (SD-OCT) with a 1-${\mu}m$ band light source is shown here. The phase of the reference beam is continuously stepped while the probing beam scans the sample laterally (B-scan). The two dimensional spectral interferogram obtained is processed by a Fourier transform method to obtain a complex spectrum leading to a full-range OCT image. A detailed mathematical explanation of the complex conjugate resolving method utilized is provided. The system's measurement speed was 7.96 kHz, the measured axial resolution was $9.6{\mu}m$ in air and the maximum sensitivity 99.4 dB. To demonstrate the effect of mirror image elimination, In vivo human eye pathology was measured.

INDUSTRIAL MATHEMATICS IN ULTRASOUND IMAGING

  • JANG, JAESEONG;AHN, CHI YOUNG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.3
    • /
    • pp.175-202
    • /
    • 2016
  • Ultrasound imaging is a widely used tool for visualizing human body's internal organs and quantifying clinical parameters. Due to its advantages such as safety, non-invasiveness, portability, low cost and real-time 2D/3D imaging, diagnostic ultrasound industry has steadily grown. Since the technology advancements such as digital beam-forming, Doppler ultrasound, real-time 3D imaging and automated diagnosis techniques, there are still a lot of demands for image quality improvement, faster and accurate imaging, 3D color Doppler imaging and advanced functional imaging modes. In order to satisfy those demands, mathematics should be used properly and effectively in ultrasound imaging. Mathematics has been used commonly as mathematical modelling, numerical solutions and visualization, combined with science and engineering. In this article, we describe a brief history of ultrasound imaging, its basic principle, its applications in obstetrics/gynecology, cardiology and radiology, domestic-industrial products, contributions of mathematics and challenging issues in ultrasound imaging.

Multiple-image Encryption and Multiplexing Using a Modified Gerchberg-Saxton Algorithm in Fresnel-transform Domain and Computational Ghost Imaging

  • Peiming Zhang;Yahui Su;Yiqiang Zhang;Leihong Zhang;Runchu Xu;Kaimin Wang;Dawei Zhang
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.362-377
    • /
    • 2023
  • Optical information processing technology is characterized by high speed and parallelism, and the light features short wavelength and large information capacity; At the same time, it has various attributes including amplitude, phase, wavelength and polarization, and is a carrier of multi-dimensional information. Therefore, optical encryption is of great significance in the field of information security transmission, and is widely used in the field of image encryption. For multi-image encryption, this paper proposes a multi-image encryption algorithm based on a modified Gerchberg-Saxton algorithm (MGSA) in the Fresnel-transform domain and computational ghost imaging. First, MGSA is used to realize "one code, one key"; Second, phase function superposition and normalization are used to reduce the amount of ciphertext transmission; Finally, computational ghost imaging is used to improve the security of the whole encryption system. This method can encrypt multiple images simultaneously with high efficiency, simple calculation, safety and reliability, and less data transmission. The encryption effect of the method is evaluated by using correlation coefficient and structural similarity, and the effectiveness and security of the method are verified by simulation experiments.

Viewing Quality Enhancement of 3D Reconstructed Images in Computational Integral Imaging Reconstruction by use of Averaging Method

  • Li, Gen;Hwang, Dong-Choon;Lee, Keong-Jin;Kim, Eun-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.757-760
    • /
    • 2008
  • In this paper, an improved computational integral imaging reconstruction (CIIR) is proposed. The proposed method can highly enhance the viewing quality of reconstructed image. To show the feasibility of proposed method, some experiments are performed and the results are compared and discussed with those of the conventional method.

  • PDF

Orthoscopic Integral Imaging Display by Use of Computational Method Based on Lenslet Model (렌즈릿 모델에 기초한 컴퓨터 변환을 통한 Orthoscopic 집적 영상 디스플레이)

  • Shin, Donghak;Hong, Seok-Min;Lee, Byung-Gook;Piao, Yongri;Zhang, Miao
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.1015-1018
    • /
    • 2012
  • A computational method of integral imaging is proposed based on the lenslet model which allows that the orthoscopic 3D image can be reconstructed at any arbitrary position without any restrictions. The proposed method is not rigidly adhere to the fixed reconstructed distance, but also requires no additional procedure during the depth conversion process. To show the usefulness of the proposed method, we carry out the preliminary experiments and present the experimental results.

  • PDF

Resolution Enhanced Computational Integral Imaging Reconstruction by Using Boundary Folding Mirrors

  • Piao, Yongri;Xing, Luyan;Zhang, Miao;Lee, Min-Chul
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.363-367
    • /
    • 2016
  • In this paper, we present a resolution-enhanced computational integral imaging reconstruction method by using boundary folding mirrors. In the proposed method, to improve the resolution of the computationally reconstructed 3D images, the direct and reflected light information of the 3D objects through a lenslet array with boundary folding mirrors is recorded as a combined elemental image array. Then, the ray tracing method is employed to synthesize the regular elemental image array by using a combined elemental image array. From the experimental results, we can verify that the proposed method can improve the visual quality of the computationally reconstructed 3D images.

Resolution-enhanced Reconstruction of 3D Object Using Depth-reversed Elemental Images for Partially Occluded Object Recognitionz

  • Wei, Tan-Chun;Shin, Dong-Hak;Lee, Byung-Gook
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.139-145
    • /
    • 2009
  • Computational integral imaging (CII) is a new method for 3D imaging and visualization. However, it suffers from seriously poor image quality of the reconstructed image as the reconstructed image plane increases. In this paper, to overcome this problem, we propose a CII method based on a smart pixel mapping (SPM) technique for partially occluded 3D object recognition, in which the object to be recognized is located at far distance from the lenslet array. In the SPM-based CII, the use of SPM moves a far 3D object toward the near lenslet array and then improves the image quality of the reconstructed image. To show the usefulness of the proposed method, we carry out some experiments for occluded objects and present the experimental results.

Accelerated Generation Algorithm for an Elemental Image Array Using Depth Information in Computational Integral Imaging

  • Piao, Yongri;Kwon, Young-Man;Zhang, Miao;Lee, Joon-Jae
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.2
    • /
    • pp.132-138
    • /
    • 2013
  • In this paper, an accelerated generation algorithm to effectively generate an elemental image array in computational integral imaging system is proposed. In the proposed method, the depth information of 3D object is extracted from the images picked up by a stereo camera or depth camera. Then, the elemental image array can be generated by using the proposed accelerated generation algorithm with the depth information of 3D object. The resultant 3D image generated by the proposed accelerated generation algorithm was compared with that the conventional direct algorithm for verifying the efficiency of the proposed method. From the experimental results, the accuracy of elemental image generated by the proposed method could be confirmed.

Optical Encryption Scheme with Multiple Users Based on Computational Ghost Imaging and Orthogonal Modulation

  • Yuan, Sheng;Liu, Xuemei;Zhou, Xin;Li, Zhongyang
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.476-480
    • /
    • 2016
  • For the application of multiusers, the arrangement and distribution of the keys is a much concerning problem in a cryptosystem. In this paper, we propose an optical encryption scheme with multiple users based on computational ghost imaging (CGI) and orthogonal modulation. The CGI encrypts the secret image into an intensity vector rather than a complex-valued matrix. This will bring convenience for post-processing and transmission of the ciphertext. The orthogonal vectors are taken as the address codes to distinguish users and avoid cross-talk. Only the decryption key and the address code owned by an authorized user are matched, the secret image belonging to him/her could be extracted from the ciphertext. Therefore, there are two security levels in the encryption scheme. The feasibility and property are verified by numerical simulations.

Analysis between elemental image size and object locations in the pickup using periodically-distributed lenslets and enhancement of computational integral imaging (주기적으로 배치된 렌즈 배열 픽업에서의 요소 영상 크기와 3차원 물체 위치와의 해석과 컴퓨터 집적 영상 복원 화질 개선 방법)

  • Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.5
    • /
    • pp.1171-1176
    • /
    • 2011
  • This paper describes an analysis on the relationship between elemental image size and object locations in the computational integral imaging reconstruction and in the pickup using a periodically-distributed lenslet array. A sparse sampling effect arises from a periodically-distributed lenslet array in the pickup of 3D objects. The relationship between elemental image size and object location is also reported. Based on the analysis, a method to eliminate the sparse sampling is proposed. To show the effectiveness of the proposed method, experimental results are carried out. It turns out that the theory works.