• Title/Summary/Keyword: Computational history

Search Result 317, Processing Time 0.024 seconds

SOME RESULTS OF MOMENTS IN MULTIVARIATE STATISTICAL DISTRIBUTION

  • Chul Kang;Park, Sang-Don
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.323-334
    • /
    • 2003
  • We review the developmental history of the moment matrix of matrix quadratic form. This paper also investigates, the moment matrix of (non-central) Wishart distribution, which is multi-version of X$^2$ distribution.

Efficient Dynamic Analysis of High-rise Buildings Having Belt Walls Connected by a Sky-Bridge (스카이브릿지로 연결된 벨트월이 있는 고층건물의 효율적인 동적해석)

  • Lee, Dong-Guen;Kim, Hyun-Su;Yang, Ah-Ram;Ko, Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.3
    • /
    • pp.231-242
    • /
    • 2009
  • In the design of a sky-bridge, repetitive boundary nonlinear time history analyses are required to accurately predict dynamic behaviors of the connected buildings because the connection systems of a sky-bridge usually have high nonlinearity. If a conventional finite element model for entire high-rise buildings is used for repetitive boundary nonlinear time history analyses, computational efforts could be significant. In this study, an equivalent cantilever model considering the belt-wall effect has been proposed for an efficient dynamic analysis and a performance evaluation of vibration control of high-rise buildings connected by a sky-bridge. To verify the accuracy and efficiency of the proposed equivalent model, boundary nonlinear time history analyses of 49- and 42-story example buildings connected by a sky-bridge have been performed for wind excitation. Based on the analytical results, it has been verified that the proposed equivalent model can provide accurate dynamic responses of building structures connected by a sky-bridge with significantly reduced computational efforts.

Integration of History-based Parametric CAD Model Translators Using Automation API (오토메이션 API를 사용한 설계 이력 기반 파라메트릭 CAD 모델 번역기의 통합)

  • Kim B.;Han S.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.3
    • /
    • pp.164-171
    • /
    • 2006
  • As collaborative design and configuration design are of increasing importance in product development, it becomes essential to exchange the feature and parametric CAD models among participants. A history-based parametric method has been proposed and implemented. But each translator which exchanges the feature and parametric information tends to be heavy because to implement duplicated functions such as the identification of the selected geometries, mapping between features which have different attributes. Furthermore. because the history-based parametric translator uses the procedural model as the neutral format, which is the XML macro file, the history-based parametric translators need a geometric modeling kernel to generate an internal explicit geometric model. To ease the problem, we implemented a shared integration platform, the TransCAD. The TransCAD separates translators from the XML macro files. The translators for various CAD systems need to communicate with only the TransCAD. To support the communication with the TransCAD, we exposed the functions of the TransCAD by using the Automation APIs, which is developed by Microsoft. The Automation APIs of the TransCAD consist of the part modeling functions, the data extraction functions, and the utility functions. Each translator uses these functions to translate a parametric CAD model from the sending CAD system into the XML format, or from the in format into the model of the receiving CAD system This paper introduces what the TransCAD is and how it works for the exchange of the feature and parametric models.

Seismic Analysis of 3D-Truss by Response Spectrum (응답스펙트럼에 의한 트러스 구조물의 내진해석)

  • 안주옥;이승재
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.159-168
    • /
    • 1999
  • In seismic analysis, there are two main ways - uniform load method and dynamic analysis, dynamic analysis can be divided into response spectrum analysis and time history analysis. In case of which get the complexion of the vibration with 3-axis of coordinate direction in each mode of free vibration mode happened owing to complication of the shape, 3-dimensional dynamic analysis is recommended to perform as multi-mode spectral analysis in standard specification for highway bridge. The purpose of this study is to understand the dynamic behavior by performing multi-mode seismic analysis according to responses analysis and time history anal)'sis in using record of earthquake. In accordance with the criterion of seismic design as defined in standard specification for highway bridge by using modified records of the El Centre and Coyote Lake earthquake, response spectrum was constructed by using the tripartite logarithmic plot. The 3-span continuous space truss bridge was selected as model of numerical analysis. As the result performed time history analysis and analysis of response spectrum for the model of numerical analysis, the result of time history analysis was slightly larger than that of response spectrum analysis. This coincide with the tendency of the result came from the analysis when using a jagged response spectrum analysis, This coincide with the tendency of the result came from the analysis when using a jagged response spectrum for a single excitation. In the Process of performing these two analysis. response spectrum analysis is more effective than time history analysis in saving times in analyzing data.

  • PDF

Time-history analysis based optimal design of space trusses: the CMA evolution strategy approach using GRNN and WA

  • Kaveh, A.;Fahimi-Farzam, M.;Kalateh-Ahani, M.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.3
    • /
    • pp.379-403
    • /
    • 2012
  • In recent years, the need for optimal design of structures under time-history loading aroused great attention in researchers. The main problem in this field is the extremely high computational demand of time-history analyses, which may convert the solution algorithm to an illogical one. In this paper, a new framework is developed to solve the size optimization problem of steel truss structures subjected to ground motions. In order to solve this problem, the covariance matrix adaptation evolution strategy algorithm is employed for the optimization procedure, while a generalized regression neural network is utilized as a meta-model for fitness approximation. Moreover, the computational cost of time-history analysis is decreased through a wavelet analysis. Capability and efficiency of the proposed framework is investigated via two design examples, comprising of a tower truss and a footbridge truss.

Seismic Perfomance Evaluation of Wind-Designed Steel Highrise Buildings Based on Linear Dynamic Analysis (내풍설계된 철골조 초고층건물의 선형동적해석에 의한 내진성능평가)

  • Lee Cheol-Ho;Kim Seon-Woong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.652-659
    • /
    • 2005
  • Even in moderate to low seismic regions like Korean peninsular where wind loading usually governs the structural design of a tall building, the probable structural impact of the design basis earthquake or the maximum credible earthquake on the selected structural system should be considered at least in finalizing the design. In this study, by using response spectrum analysis and linear time history analysis method, seismic performance evaluation was conducted for wind-designed concentrically braced steel highrise buildings. Both spectrum-compatible artificial accelerograms and recorded accelerograms were used as input ground motions for the time history analysis. The analysis results showed that wind-designed concentrically braced steel highrise buildings possess significantly increased elastic seismic capacity due to the system overstrength resulting from the wind-serviceability criterion and the width-to-thickness ratio limits on steel members. Time history analysis results generally tended to underestimate the seismic response as compared to those of response spectrum analysis.

  • PDF

Fatigue Life Prediction of Weldment with Damage Mechanics (손상역학을 이용한 용접부의 피로수명예측)

  • Chung, Heung-Jin;Yoo, Byoung-Chan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.60-64
    • /
    • 2008
  • According to previous research, welding-induced stress in steel structures can significantly affect the fatigue behaviour; it produces initial damage of weldiug part of structure locally and residual stresses reduce the fatigue strength after welding precess. In this study, through continuum damage mechanics, we can estimate the weldiug damage using the stress and strain history during welding process and the effect of welding residual stress for assessment of fatigue life. The variation of welding-induced stresses and strains need be traced precisely in advance for a reliable weldiug damage assessment. In this study, a damage and fatigue analysis techniques for steel structures with welding-induced residual stress are presented. First, We calculate the history of temperature according with welding process. And residual stress with a welding thermal history was evaluated by non-linear thermal stress analysis. Secondly, welding damage and fatigue life are estimated with kinetic damage law.

  • PDF

Feature-based Similarity Assessment for Re-using CAD Models (CAD 모델 재사용을 위한 특징형상기반 유사도 측정에 관한 연구)

  • Park, Byoung-Keon;Kim, Jay-Jung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.1
    • /
    • pp.21-30
    • /
    • 2011
  • Similarity assessment of a CAD model is one of important issues from the aspect of model re-using. In real practice, many new mechanical parts are designed by modifying existing ones. The reuse of part enables to save design time and efforts for the designers. Design time would be further reduced if there were an efficient way to search for existing similar designs. This paper proposes an efficient algorithm of similarity assessment for mechanical part model with design history embedded within the CAD model. Since it is possible to retrieve the design history and detailed-feature information using CAD API, we can obtain an accurate and reliable assessment result. For our purpose, our assessment algorithm can be divided by two: (1) we select suitable parts by comparing MSG (Model Signature Graph) extracted from a base feature of the required model; (2) detailed-features' similarities are assessed with their own attributes and reference structures. In addition, we also propose a indexing method for managing a model database in the last part of this article.

소수의 역사적 기원과 의의

  • 강흥규;변희현
    • Journal for History of Mathematics
    • /
    • v.16 no.3
    • /
    • pp.69-76
    • /
    • 2003
  • In this article, We explained the historical origin and significance of decimal fraction, and draw some educational implications based on that. In general, it is accepted that decimal fraction was first invented by a Belgian man, Simon Stevin(1548-1620). In short, the idea of infinite decimal fraction refers to the ratio of the whole quantity to a unit. Stevin's idea of decimal fraction is significant for the history of mathematics in that it broke through the limit of Greek mathematics which separated discrete quantity from continuous quantity, and number from magnitude, and it became the origin of modern number concept. H. Eves chose the invention of decimal fraction as one of the "Great moments of mathematics."The method of teaching decimal fraction in our school mathematics tends to emphasize the computational aspect of decimal fraction too much and ignore the conceptual aspect of it. In teaching decimal fraction, like all the other areas of mathematics, the conceptual aspect should be emphasized as much as the computational aspect.al aspect.

  • PDF

Mathematics education in ancient China (중국 수학교육의 역사(주나라에서 송나라까지))

  • Kim, Sung Sook;Khang, Mee Kyung
    • Journal for History of Mathematics
    • /
    • v.31 no.5
    • /
    • pp.223-234
    • /
    • 2018
  • Ancient Chinese mathematics education has a long history of more than 3,000 years, and many excellent mathematicians have been fostered. However, the systematic framework for teaching mathematics should be considered to be started from the Zhou Dynasty. In this paper, we examined the educational goals, trainees(learners), providers(educators), and contents in mathematics education in the ancient Chinese Zhou Han Dynasty, Tang Dynasty and Song Dynasty.