• 제목/요약/키워드: Computational heat transfer

검색결과 676건 처리시간 0.028초

전산유동가시화를 활용한 웨이퍼 이송장치의 복사열전달에 관한 연구 (A Study on Radiation Heat Transfer of Wafer Transfer Module Using Computational Flow Visualization)

  • 추민기;정지홍;손동기;고한서
    • 한국가시화정보학회지
    • /
    • 제20권3호
    • /
    • pp.58-66
    • /
    • 2022
  • The high heat emitted from the process module and heat jacket may cause errors in semiconductor process equipment. Barriers were designed to reduce the temperature of surface on transfer module. A designed barrier was compared and analyzed by numerical analysis using ANSYS Fluent. The average temperature of barrier and effect of radiation heat transfer were also compared through absorbed radiative heat flux of the barrier. The adoption of the barrier had an effect on the radiative heat transfer reduction of the transfer module rod. The effect of the angles of barrier from 50° to 90° on the heat transfer was investigated using the absorbed radiative heat flux with the average temperature. The angle of barrier of 50° reduced the temperature up to 9.6 %.

바이오매스 급속열분해 반응기내 열전달 특성 (HEAT TRANSFER CHARACTERISTICS IN A FAST PYROLYSIS REACTOR FOR BIOMASS)

  • 최항석
    • 한국전산유체공학회지
    • /
    • 제15권1호
    • /
    • pp.9-16
    • /
    • 2010
  • The characteristics of flow and heat transfer in a bubbling fluidized bed are investigated by means of computational fluid dynamics (CFD). To simulate two-phase flow for the gas and solid flows, Eulerian-Eulerian approach is applied. Attention is paid for a heat transfer from the wall to fluidized bed by bubbling motion of the flow. From the result, it is confirmed that heat transfer is promoted by chaotic bubbling motion of the flow by enhancement of mixing among solid particles. In particular, the vortical flow motion around gas bubble plays an important role for the mixing and consequent heat transfer. Discussion is made for the time and space averaged Nusselt number which shows peculiar characteristics corresponding to different flow regimes.

열전도의 역문제 방법을 이용한 대형 LPG 엔진 피스톤의 열부하 해석 (Analysis of Thermal Loading of a Large LPG Engine Piston Using the Inverse Heat Conduction Method)

  • 박철우;이부윤
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.820-827
    • /
    • 2006
  • The convection heat transfer coefficients on the top surface of a large liquid petroleum liquid injection(LPLi) engine piston are analyzed by solving an inverse thermal conduction problem. The heat transfer coefficients are numerically found so that the difference between analyzed temperatures from the finite element method and measured temperatures is minimized. Using the resulting heat transfer coefficients as the boundary condition, temperature of a large LPLi engine piston is analyzed.

  • PDF

엇갈리게 기울어진 충돌제트들에 의한 오목면 상의 열전달 성능해석 (ANALYSIS OF HEAT TRANSFER OF INCLINED IMPINGING JETS ON A CONCAVE SURFACE)

  • 허만웅;이기돈;김광용
    • 한국전산유체공학회지
    • /
    • 제16권2호
    • /
    • pp.11-16
    • /
    • 2011
  • Numerical analyses have been carried out to analyze the three-dimensional turbulent heat transfer by impingement jet on a concave surface with variation of geometric configurations. Three-dimensional Reynolds averaged Navier-stokes equations have been calculated using the shear stress transport turbulent model. The numerical results for heat transfer rate were validated in comparison with the experimental data. The distance between jet nozzles and angle of inclined jet nozzle were selected as the geometric variables. Area-averaged Nusselt numbers on concave surface are evaluated to find the characteristics of heat transfer with the two geometric variables. The heat transfer increases as the distance between jet nozzles increases, and the inclined impinging jets show much better heat transfer performance than the vertical impinging jet.

Shell & Tube 열교환기 Shell 측 열전달 및 유동에 대한 수치해석 (NUMERICAL ANALYSIS ON THE HEAT TRANSFER AND FLOW IN THE SHELL AND TUBE HEAT EXCHANGER)

  • 이상혁;이명성;허남건
    • 한국전산유체공학회지
    • /
    • 제12권3호
    • /
    • pp.13-19
    • /
    • 2007
  • A numerical simulation on the heat transfer and flow field was carried out to improve the performance of the shell and tube heat exchanger. The steady incompressible 3-D Navier-Stokes solution is obtained with the actual operational condition and geometry of the heat exchanger. Based on this study, it is noted that the present geometry of the heat exchanger causes poor heat transfer since the air inside shell does not flow through the tube bundle, but around it. The enhancement of the heat transfer can be achieved by the variation of the design factor like the sealing strip located on the top/bottom and middle of the baffle, but it causes the increasement of the pressure drop. In this paper, the effects of the location and size of the sealing strips and flow rate through the heat exchanger on the heat transfer and pressure drop are studied.

근적외선 열풍기의 복합열전달에 관한 수치적 연구 (NUMERICAL STUDY ON COMBINED HEAT TRANSFER IN NIR HEATING CHAMBER)

  • 최훈기;유근종;김인호
    • 한국전산유체공학회지
    • /
    • 제12권4호
    • /
    • pp.7-13
    • /
    • 2007
  • Numerical analysis is carried out for combined heat transfer in an indirected NIR(Near Infrared Ray) heating chamber. Reynolds number and shapes of absorbed cylinder are known as important parameters on the combined heat transfer effects. Reynolds number based on the outer diameter of the cylinder is varied from $10^3$ to $3{\times}10^5$. Four difference heat transfer regimes are observed: forced convection and radiative heat transfer on the outer surface of the cylinder, pure conduction in the cylinder body, pure natural convection and radiation between lamp surface and inner surface of the cylinder, and radiation from the lamp. Flow and temperature characteristics are presented with iso-contour lines for the absorbed circular and elliptic cylinders to compare their differences. The convective and radiative heat transfer fluxes are also compared with different Reynolds numbers. As usual, Reynolds number is an important factor to estimate increasing convective heat transfer as it increases. The shape of absorbed cylinder results overall heat transfer rates remain unchanged.

타원형휜-원형관 열교환기의 강제대류 열전달 특성 (CONVECTIVE HEAT TRANSFER CHARACTERISTICS OF OVAL FIN-CIRCULAR TUBE HEAT EXCHANGER)

  • 강희찬;이종휘
    • 한국전산유체공학회지
    • /
    • 제15권2호
    • /
    • pp.1-6
    • /
    • 2010
  • The purpose of the present study is to investigate the flow resistance and the heat transfer characteristics of oval fin-tube heat exchanger. Six kinds of oval fin having the same fin area and different diameter ratio tested numerically. Test data for the heat transfer, pressure drop and fin temperature were shown and discussed. The pressure drop and heat transfer increased for increasing the oval fin diameter ratio(diameter of span-wise direction to diameter of longitudinal diameter) up to 50% and 45% respectively.

두 개의 원형 실린더 주위의 열전달 (HEAT TRANSFER ON TWO NEARBY CIRCULAR CYLINDERS)

  • 한태헌;양경수;윤동혁;이경준
    • 한국전산유체공학회지
    • /
    • 제13권2호
    • /
    • pp.42-47
    • /
    • 2008
  • Heat transfer on two identical nearby circular cylinders immersed in the uniform cross flow at Re=120 and Pr=0.7 was numerically studied. We consider all possible types of arrangements of the two circular cylinders in terms of the distance between the two cylinders and the inclination angle with respect to the direction of the main flow. It turns out that significant changes in the characteristics of heat transfer are noticed depending on how the two circular cylinders are positioned, resulting in quantitative changes of heat transfer coefficients on both cylinders. Collecting all the numerical results obtained, we propose a contour diagram for averaged Nusselt number for each of the two cylinders. The perfect geometrical symmetry implied in the flow configuration allows one to use those diagrams to estimate heat transfer rates on two identical circular cylinders arbitrarily positioned in physical space with respect to the main flow direction.

기울어진 타원형 딤플이 부착된 냉각 유로에 대한 열전달 성능해석 (HEAT-TRANSFER ANALYSIS OF A COOLING CHANNEL WITH INCLINED ELLIPTICAL DIMPLES)

  • 김현민;문미애;김광용
    • 한국전산유체공학회지
    • /
    • 제17권1호
    • /
    • pp.1-7
    • /
    • 2012
  • This paper deals with a parametric study on inclined elliptical dimples to enhance heat transfer in a channel. Three-dimensional Reynolds-averaged Naiver-Stokes equations are solved to estimate flow and heat transfer in dimpled channel. As turbulence closure, the low-Re shear stress transport model is employed. Two non-dimensional geometric variables, dimple ellipse diameter ratio and angle of main diameter to flow direction are selected for the parametric study. The inclined elliptical dimples show higher heat-transfer performance but with higher pressure drop compared to the circular dimples. And there is an optimum inclination angle that gives the maximum heat transfer.

플라스틱 판형 열교환기의 와류발생기에 관한 연구 (A Study on the Vortex Generators of Plastic Plate Heat Exchangers)

  • 오윤영;유성연;고성호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.107-110
    • /
    • 2002
  • The present study deals with CFD analysis of 'The vortex generators on plastic plate heat exchanger'. When a vortex generator is placed on the heat transfer surface, the flow gets more complex because it entails complicated three-dimensional flows such as separation, reattachment, and recirculation. CFX-5.4, a commercial code utilizing unstructured mesh, has been used as a computational method for solving RANS(Reynolds-Averaged Wavier-Stokes) equations, and the applied turbulence model is $k-{\varepsilon}$ model. In addition, those computational analyses were implemented under various conditions , with or without the vortex generator between two plates, the number, form and the size of vortex generator, and different attack of angle. From the calculated temperature, velocity and pressure distribution, vorticity, wall heat flux and so on under those conditions, this study shows the effect of vortex on heat transfer.

  • PDF