• Title/Summary/Keyword: Computational fire analysis

Search Result 139, Processing Time 0.023 seconds

A Team-based Firefighter Training Simulator for Complex Buildings (대형 복합건물을 대상으로 하는 소방관 팀 훈련용 시뮬레이터 개발)

  • Lee, Jai-Kyung;Cha, Moo-Hyun;Choi, Byung-Il;Kim, Tae-Sung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.5
    • /
    • pp.370-379
    • /
    • 2011
  • The increasing complexity of complex buildings, such as high-rise buildings and underground subway stations, presents new challenges to firefighters. In a fire in complex buildings, the importance of the collaboration between firefighters is clear. The increased demand on firefighter training for such environment is now evident. Due to cost, time, and safety issues, it is impossible to experience a real fire in such environments for training. In addition, the use of real fire for training does not enable repeatable training and the evaluation of the training is difficult. We developed a team-based firefighter training simulator for complex buildings using the virtual reality technology. It provides the training and evaluation of firefighting and mission-based team training. To model real fire phenomena in virtual space, a numerical analysis method based on fire dynamics is used. To achieve an immersive virtual environment, an augmented reality technique for the compensation of real world image and a haptic technique for heat experience are adopted. The developed training simulator can help the firefighter to respond to large and complex firefighting scenarios, while maintaining the safety of the trainees.

Integrated fire dynamic and thermomechanical modeling of a bridge under fire

  • Choi, Joonho;Haj-Ali, Rami;Kim, Hee Sun
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.815-829
    • /
    • 2012
  • This paper proposes a nonlinear computational modeling approach for the behaviors of structural systems subjected to fire. The proposed modeling approach consists of fire dynamics analysis, nonlinear transient-heat transfer analysis for predicting thermal distributions, and thermomechanical analysis for structural behaviors. For concretes, transient heat formulations are written considering temperature dependent heat conduction and specific heat capacity and included within the thermomechanical analyses. Also, temperature dependent stress-strain behaviors including compression hardening and tension softening effects are implemented within the analyses. The proposed modeling technique for transient heat and thermomechanical analyses is first validated with experimental data of reinforced concrete (RC) beams subjected to high temperatures, and then applied to a bridge model. The bridge model is generated to simulate the fire incident occurred by a gas truck on April 29, 2007 in Oakland California, USA. From the simulation, not only temperature distributions and deformations of the bridge can be found, but critical locations and time frame where collapse occurs can be predicted. The analytical results from the simulation are qualitatively compared with the real incident and show good agreements.

Finite Element Analysis of Slender Reinforced Concrete Columns Subjected to Eccentric Axial Loads and Elevated Temperature (고온과 편심 축하중을 받는 세장한 철근 콘크리트 기둥의 유한요소해석)

  • Lee, Jung-Hwan;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.3
    • /
    • pp.159-166
    • /
    • 2022
  • In this study, slender reinforced concrete columns subjected to high temperatures and eccentric axial loads are evaluated by finite element analysis employing Abaqus (a finite element analysis program). Subsequently, the analysis results are compared and assessed. The sequentially coupled thermal stress analysis provided by Abaqus was employed to reflect the condition of an axially loaded column exposed to fire. First, heat transfer analysis was performed on the column cross-section. After verifying the results, another analysis was conducted: the cross-section was transformed into a three-dimensional element and then structural analyzed. In the analysis process, the column was modeled by accounting for the effects of tension stiffening and initial imperfection that could affect convergence and accuracy. The analysis results were compared with 74 experimental records, and an average error of 6% was observed based on the fire exposure and resistance. The foregoing indicates that the fire resistance performance of reinforced concrete columns can be predicted through finite element analysis.

A Fire Simulation of Light Railway Transit (경량전철시스템의 화재 시뮬레이션)

  • Won Chan-Shik;Lee Ki-Choon;Hur Nahmkeon;Mok Jae-Kyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.170-175
    • /
    • 2001
  • Fire inside light railway transit(LRT) was simulated for various fire scenarios using CFD analysis in order to assess the safety of passengers. Considered in the present paper are the effects of locations of fire, a fire size, an operation of ventilation system and an opening time of door on evolution of temperature and smoke concentration inside the LRT. For fire simulation, fire cells releasing heat and smoke corresponding to fire size were positioned at the location of fire. From the results, it is seen that the ventilation system and the opening time of door were the most important factors on temperature and smoke concentration inside the LRT

  • PDF

Application of CFD Method to Performance Prediction of Fire-Suppression System for Electric Power Utilities (발전설비용 소화시스템의 성능 예측을 위한 CFD기법 적용 연구)

  • Chung, H.T.;Bae, K.Y.;Kim, C.H.;Jeong, I.S.;Bae, J.S.;Han, Y.S.;Kim, J.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.296-299
    • /
    • 2008
  • In the present research, the exclusive analysis system based on the CFD method were suggested to predict the fire-suppression performance of water mist fire-suppression equipments for design applications. The computing scope is ranged from starting pump to fire-suppression equipments, composed of three parts that calculation of flow rate and pressure distribution at each nozzle, examining of spray performance and predicting of fire-suppression performance in the fire space. Application were done to the fire-suppression system for electric power generation plants. The results were analyzed by comparison between numerical results and initial design conditions in terms of thermal and fluid mechanics.

  • PDF

Fire Hazard Analysis and Performance Based Fire safety Design for the Clean Room in Semiconductor Factory (반도체공장 Clean Room에 대한 화재요인 분석 및 성능위주 화재안전설계)

  • Han, Su-Jin;Kang, Kyung-Sik
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2006.11a
    • /
    • pp.325-336
    • /
    • 2006
  • This research analyzes clean room major fire prevention standard of clean Room (FM, IRI, and NFPA Code), the structure of Performance-Based Fire Safety Design (PBD) applied the korean fire industry situation. Performance-Based Fire Safety can operate effectively the performance of fire protection equipment & building design, so the fitness of fire safety system can be embodied by operating this. moreover, cost to be consume fire safety of real building can reduce and Performance-Based Fire Safety is considered to important technique in fire protection field. A fire in a clean room may cause a serious loss by spreading smoke particles. We will be investigated by using a computational fluid dynamics, for loss prevention by smoke spreading from one fire area to another for clean room and compared the Performance-Based Fire Safety Design with the prescriptive code design. The methodology of fire safety performance-based fire safety design and guarantee of many kinds design skill of fire system and developing design procedure will be very serious one in order to improve efficiency of domestic system. Therefore, This research will be contributing to secure safety of clean room and to set up the performance-based fire safety design in Korea by regulation for the performance-based fire safety design effectively.

  • PDF

Fire Hazard Analysis and Performance Based Fire safety Design for the Clean Room in Semiconductor factory(1) (반도체공장 Clean Room에 대한 화재요인 분석 및 성능위주 화재안전설계(1))

  • Han, Su-Jin;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.8 no.5
    • /
    • pp.211-229
    • /
    • 2006
  • This research analyzes clean room major fire prevention standard of clean Room(FM, IRI, and NFPA Code), the structure of Performance-Based Fire Safety Design(PBD) applied the korean fire industry situation. Performance-Based Fire Safety can operate effectively the performance of fire protection equipment & building design, so the fitness of fire safety system can be embodied by operating this. moreover, cost to be consume fire safety of real building can reduce and Performance-Based Fire Safety is considered to important technique in fire protection field. A fire in a clean room may cause a serious loss by spreading smoke particles. We will be investigated by using a computational fluid dynamics, for loss prevention by smoke spreading from one fire area to another for clean room and compared the Performance-Based Fire Safety Design with the prescriptive code design. The methodology of fire safety performance-based fire safety design and guarantee of many kinds design skill of fire system and developing design procedure will be very serious one in order to improve efficiency of domestic system. Therefore, This research will be contributing to secure safety of clean room and to set up the performance-based fire safety design in Korea by regulation for the performance-based fire safety design effectively.

Prediction of response of reinforced concrete frames exposed to fire

  • Balaji, Aneesha;Muhamed Luquman, K.;Nagarajanb, Praveen;Pillai, T.M. Madhavan
    • Advances in Computational Design
    • /
    • v.1 no.1
    • /
    • pp.105-117
    • /
    • 2016
  • The objective of this work is to study the restraining effect in fire resistance of framed structures and to evaluate the global response of reinforced concrete frames when exposed to fire based on advanced finite element method. To study the response a single portal frame is analyzed. The effect of floor slab on this frame is studied by modeling a beam-column-slab assembly. The evolution of temperature distribution, internal stresses and deformations of the frame subjected to ISO 834 standard fire curve for both the frames are studied. The thermal and structural responses are evaluated and a comparison of results of individual members and entire structure is done. From the study it can be seen that restraining forces has significant influence on both stresses and deflection and overall response of the structure when compared to individual structural member. Among the various structural elements, columns are the critical members in fire and failure of column causes the failure of entire structure. The fire rating of various structural elements of the frame is determined by various failure criteria and is compared with IS456 2000 tabulated fire rating.

3D finite element analysis of the whole-building behavior of tall building in fire

  • Fu, Feng
    • Advances in Computational Design
    • /
    • v.1 no.4
    • /
    • pp.329-344
    • /
    • 2016
  • In this paper, a methodology to simulate the whole-building behaviour of the tall building under fire is developed by the author using a 3-D nonlinear finite element method. The mechanical and thermal material nonlinearities of the structural members, such as the structural steel members, concrete slabs and reinforcing bars were included in the model. In order to closely simulate the real condition under the conventional fire incident, in the simulation, the fire temperature was applied on level 9, 10 and 11. Then, a numerical investigation on the whole-building response of the building in fire was made. The temperature distribution of the floor slabs, steel beams and columns were predicted. In addition, the behaviours of the structural members under fire such as beam force, column force and deflections were also investigated.

BENCHMARK TESTS FOR CFD CODES FOR THE ANALYSIS OF WIND FIELD IN THE FOREST (산림 바람장 해석을 위한 전산유체역학 코드들의 벤치마크 검증)

  • Park, T.W.;Chang, S.M.;Lee, B.
    • Journal of computational fluids engineering
    • /
    • v.17 no.2
    • /
    • pp.11-20
    • /
    • 2012
  • In this paper, the authors test various open codes and commercial codes based on CFD technology on the wind field around the complex terrain, which is a very important transport physics in the event of forrest fire. To study the physical mechanism inside the transition from surface fire to crown fire, the wake flow behind a parallel array of trees is studied numerically to show the flow separation in the turbulent boundary layer. Two sites near to Kunsan National University are chosen for the measurement of real wind field, and obtained data are compared with those from various computational codes such as Wind-Ninja, NIST-FDS, ANSYS-CFX, and ANSYS-FlUENT, etc. Through this research, feasibility and accuracy of the present CFD codes are investigated quantitatively, compared with the measured data with AWS.