• Title/Summary/Keyword: Computational analysis modeling

Search Result 860, Processing Time 0.027 seconds

Dynamics Analysis of a Multi-beam System Undergoing Overall Rigid Body Motion Employing Finite Element Method (유한요소법을 사용한 강체운동을 하는 다중보계의 동적 해석)

  • Choe, Sin;Yu, Hong-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2266-2273
    • /
    • 2000
  • Equations of motion of a multi-beam system undergoing overall rigid body motion are derived by employing finite element method. An orientation angle is employed to allow the arbitrary orientation o f the beam element. Modal coordinate reduction technique, which has been successfully utilized in the conventional linear modeling method, is employed for the present modeling method to reduce the computational effort. Different from the conventional linear modeling method, the present modeling method captures the motion-induced stiffness variations which are important for the dynamic analysis of structures undergoing overall rigid body motion. The numerical results are compared to those of a commercial program to verify the reliability of the present method.

An Object-Oriented Programming for the Boundary Element Method in Plane Elastostatic Contact Analysis (객체지향기법을 적용한 평면 정적 탄성 접촉 경계요소법)

  • Kim, Moon-Kyum;Yun, Ik-Jung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.2
    • /
    • pp.121-131
    • /
    • 2011
  • An object oriented programming(OOP) framework is presented to solve plane elastostatic contact problems by means of the boundary element method(BEM). Unified modeling language(UML) is chosen to describe the structure of the program without loss of generality, even though all implemented codes are written with C++. The implementation is based on computational abstractions of both mathematical and physical concepts associated with contact mechanics involving geometrical nonlinearities and the corner node problems for multi-valued traction. The overall class organization for contact analysis is discussed in detail. Numerical examples are also presented to verify the accuracy of the developed BEM program.

Computational Design of Battery System for Automotive Applications (전기자동차 배터리 시스템 개발을 위한 전산설계기술)

  • Jung, Seunghun
    • Journal of Institute of Convergence Technology
    • /
    • v.10 no.1
    • /
    • pp.37-40
    • /
    • 2020
  • Automotive battery system consists of various components such as battery cells, mechanical structures, cooling system, and control system. Recently, various computational technologies are required to develop an automotive battery system. Physics-based cell modeling is used for designing a new battery cell by conducting optimization of material selection and composition in electrodes. Structural analysis plays an important role in designing a protective system of battery system from mechanical shock and vibration. Thermal modeling is used in development of thermal management system to maintain the temperature of battery cells in safe range. Finally, vehicle simulation is conducted to validate the performance of electric vehicle with the developed battery system.

A Study on the Structural Analysis & Design Optimization Using Automation System Integrated with CAD/CAE (통합된 CAD/CAE 자동화 System을 이용한 구조강도해석 및 설계최적화에 관한 연구)

  • Yoon J.M.;Won J.H.;Kim J.S.;Choi J.H
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.2
    • /
    • pp.128-137
    • /
    • 2006
  • In this paper, a CAD/CAE integrated optimal design system is developed, in which design and analysis process is automated using CAD/CAE softwares for a complex model in which the modeling by parametric feature is not easy to apply. Unigraphics is used for CAD modeling, in which the process is automated by using UG/Knowledge Fusion for modeling itself and UG/Open API function for the other functions respectively. Structural analyses are also carried out automatically by ANSYS using the imported parasolid model. The developed system is applied for the PLS(Plasma Lighting System) consisting of more than 20 components, which is a next generation illumination system that is used to illuminate stadium or outdoor advertizing panel. The analyses include responses by static, wind and impact loads. As a result of analyses, tilt assembly, which is a link between upper and lower body, is found to be the most critical component bearing higher stresses. Experiment is conducted using MTS to validate the analysis result. Optimization is carried out using the software Visual DOC for the tilt assembly to minimize material volume while maintaining allowable stress level. As a result of optimization, the maximum stress is reduced by 57% from the existing design, though the material volume has increased by 21%.

Requirement Analysis Using UML on PDM System Development (UML을 이용한 PDM 시스템 요구사항 분석)

  • Oh, Dae-Kyun;Kim, Yong-Gyun;Lee, Jang-Hyun;Shin, Jong-Gye
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.2
    • /
    • pp.121-130
    • /
    • 2008
  • The concept of integrated product information has been universalized so that many manufacturing industries have applied the concept to their production system. The field of PDM (Product Data Management), which is one of the core components of the integrated product information, is not an exception. Therefore, various PLM (Product Lifecycle Management) software providers are in process of suggesting the PDM solutions. As the PDM solution is widely adopted in the manufacturing industries, the successful application of the solution has been gathering more strength in manipulation of the product information. However, the standardized implementation methodology is stuck in the basic level contrast with the enhanced PDM's functionality and capability. Present study refers to the application of UML (Unified Modeling Language), which is an object oriented modeling description, to PDM system development procedure. The advantage of UML is its efficiency and effectiveness in handling complex requirement often found in PDM implementation works. This paper shows the integration of PDM and UML proposes a philosophy for the support of requirement analysis throughout the full implementation of PDM system.

Augmented Visualization of Modeling & Simulation Analysis Results (모델링 & 시뮬레이션 해석 결과 증강가시화)

  • Kim, Minseok;Seo, Dong Woo;Lee, Jae Yeol;Kim, Jae Sung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.22 no.2
    • /
    • pp.202-214
    • /
    • 2017
  • The augmented visualization of analysis results can play an import role as a post-processing tool for the modeling & simulation (M&S) technology. In particular, it is essential to develop such an M&S tool which can run on various multi-devices. This paper presents an augmented reality (AR) approach to visualizing and interacting with M&S post-processing results through mobile devices. The proposed approach imports M&S data, extracts analysis information, and converts the extracted information into the one used for AR-based visualization. Finally, the result can be displayed on the mobile device through an AR marker tracking and a shader-based realistic rendering. In particular, the proposed method can superimpose AR-based realistic scenes onto physical objects such as 3D printing-based physical prototypes in a seamless manner, which can provide more immersive visualization and natural interaction of M&S results than conventional VR or AR-based approaches. A user study has been performed to analyze the qualitative usability. Implementation results will also be given to show the advantage and effectiveness of the proposed approach.

Architectural Model of Integrated Simulation Environment for the M&S Based Design of Unmanned Ground Combat Vehicle (M&S기반 무인지상전투차량 설계를 위한 통합모의실험환경 아키텍처모델)

  • Choi, Sang Yeong;Park, Jin Ho;Park, Kang
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.3
    • /
    • pp.221-229
    • /
    • 2015
  • M&S (Modeling & Simulation) based design is widely accepted for the development of the future weapon system with better performance in a cheaper and faster way. Integrated simulation environment (ISE) is needed for the M&S based design. On the ISE, system engineers can not only verify design options but also validate system requirements. In this paper, we propose architectural models of the integrated simulation environment (ISE) which incorporates mission effectiveness M&S (Modeling & Simulation), system performance M&S, the optimization model of integrated performances, digital mockup and virtual prototype. The ISE architectural models may be used to implement the ISE for the development of the future unmanned ground combat vehicle.

Integration of Geometrically Exact Shell Finite Element With Trimmed Surface Modeling base on the NURBS (기하학적으로 정확한 셀 유한요소와 NURBS기반의 Trimmed Surface 모델링과의 연동)

  • Choi Jin-Bork;Roh Hee-Yuel;Cho Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.794-801
    • /
    • 2006
  • The linkage framework of geometric modeling and analysis based on the NURBS technology is developed in this study. The NURBS surfaces are generated by interpolating the given set of data points or by extracting the necessary information to construct the NURBS surface from the IGES format file which is generated by the commercial CAD systems in the present study. Numerical examples shows the rate of displacement convergence according to the paramterization methods of the NURBS surface. NURBS can generate quadric surfaces in an exact manner. It is the one of the advantages of the NURBS. A trimmed NURBS surface that is often encountered in the modeling process of the CAD systems is also presented in the present study. The performance of the developed geometrically exact shell element integrated with the exact geometric representations by the NURBS equation is compared to those of the previous reported FE shell elements in the selected benchmark problems.

  • PDF

Modeling of Building Structure for an Integrated Structural Design (건축구조설계 통합시스템을 위한 건축구조물의 모델링)

  • 김치경;홍성묵
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.71-78
    • /
    • 1993
  • This study serves as a part for the development of an integrated structural design system. Efficient data management is essential in engineering computer applications where the volume of data is large and the data flow and sharing are required. From a viewpoint of computer application, building structures can be considered to be a mass ofdata. The centralized database(CDB) and database management system frees the application from the details of managing data storage and retrieval while providing a common pool of information. For this, systematic information analysis and modeling have to be preceded. In this paper we described the result of database modeling of building structure.

  • PDF