• Title/Summary/Keyword: Computational Science and Engineering

Search Result 1,991, Processing Time 0.041 seconds

The Analysis of Computational Thinking Practices in STEAM Program and its Implication for Creative Problem Solvers in the 21st Century

  • Park, Young-Shin;Green, James
    • Journal of the Korean earth science society
    • /
    • v.41 no.4
    • /
    • pp.415-434
    • /
    • 2020
  • The purpose of this study was to explore if, what kinds of, how much computational thinking (CT after this) practices could be included in STEAM programs, and what kinds of CT practices could be improved to make STEAM revitalized. The CT analyzing tool with operational definitions and its examples in science education was modified and employed for 5 science-focused and 5 engineering-focused STEAM programs. There was no discerning pattern of CT practices uses between science and engineering STEAM programs but CT practices were displayed depending on their topics. The patterns of CT practices uses from each STEAM program could be used to describe what CT practices were more explored, weakly exposed, or missing. On the basis of these prescription of CT practices from each STEAM program, the researchers could develop the weakly exposed or missing CT practices to be improved for the rich experience in CT practices during STEAM programs.

Intelligent u-Learning and Research Environment for Computational Science on Mobile Device

  • Park, Sun-Rae;Jin, Duseok;Lee, Jongsuk Ruth;Cho, Kum Won;Lee, Kyu-Chul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.709-722
    • /
    • 2014
  • In the $21^{st}$ century, IT reform has led to the development of cyber-infrastructure owing to the outstanding enhancement of computer and network performance. The ripple effect has continued to increase. Accordingly, this study suggests a new computational research environment using mobile devices. In order to simplify the access of supercomputer, Science AppStore, task management and virtualization technologies are developed on mobile devices. User can be able to research by utilizing computational science SW such as compressible flow solver and nano device simulation tool that in installed on supercomputer in mobile environments. Also, this research environment makes it possible to monitor the simulation result and covers 14 university, 33 subjects, and 1,202 individuals.

Augmenting external surface pressures' predictions on isolated low-rise buildings using CFD simulations

  • Md Faiaz, Khaled;Aly Mousaad Aly
    • Wind and Structures
    • /
    • v.37 no.4
    • /
    • pp.255-274
    • /
    • 2023
  • The aim of this paper is to enhance the accuracy of predicting time-averaged external surface pressures on low-rise buildings by utilizing Computational Fluid Dynamics (CFD) simulations. To achieve this, benchmark studies of the Silsoe cube and the Texas Tech University (TTU) experimental building are employed for comparison with simulation results. The paper is structured into three main sections. In the initial part, an appropriate domain size is selected based on the precision of mean pressure coefficients on the windward face of the cube, utilizing Reynolds Averaged Navier-Stokes (RANS) turbulence models. Subsequently, recommendations regarding the optimal computational domain size for an isolated building are provided based on revised findings. Moving on to the second part, the Silsoe cube model is examined within a horizontally homogeneous computational domain using more accurate turbulence models, such as Large Eddy Simulation (LES) and hybrid RANS-LES models. For computational efficiency, transient simulation settings are employed, building upon previous studies by the authors at the Windstorm Impact, Science, and Engineering (WISE) Lab, Louisiana State University (LSU). An optimal meshing strategy is determined for LES based on a grid convergence study. Three hybrid RANS-LES cases are investigated to achieve desired enhancements in the distribution of mean pressure coefficients on the Silsoe cube. In the final part, a 1:10 scale model of the TTU building is studied, incorporating the insights gained from the second part. The generated flow characteristics, including vertical profiles of mean velocity, turbulence intensity, and velocity spectra (small and large eddies), exhibit good agreement with full-scale (TTU) measurements. The results indicate promising roof pressures achieved through the careful consideration of meshing strategy, time step, domain size, inflow turbulence, near-wall treatment, and turbulence models. Moreover, this paper demonstrates an improvement in mean roof pressures compared to other state-of-the-art studies, thus highlighting the significance of CFD simulations in building aerodynamics.

Development of Pre- and Post-processing System for Supercomputing-based Large-scale Structural Analysis (슈퍼컴퓨팅 기반의 대규모 구조해석을 위한 전/후처리 시스템 개발)

  • Kim, Jae-Sung;Lee, Sang-Min;Lee, Jae-Yeol;Jeong, Hee-Seok;Lee, Seung-Min
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.2
    • /
    • pp.123-131
    • /
    • 2012
  • The requirements for computational resources to perform the structural analysis are increasing rapidly. The size of the current analysis problems that are required from practical industry is typically large-scale with more than millions degrees of freedom (DOFs). These large-scale analysis problems result in the requirements of high-performance analysis codes as well as hardware systems such as supercomputer systems or cluster systems. In this paper, the pre- and post-processing system for supercomputing based large-scale structural analysis is presented. The proposed system has 3-tier architecture and three main components; geometry viewer, pre-/post-processor and supercomputing manager. To analyze large-scale problems, the ADVENTURE solid solver was adopted as a general-purpose finite element solver and the supercomputer named 'tachyon' was adopted as a parallel computational platform. The problem solving performance and scalability of this structural analysis system is demonstrated by illustrative examples with different sizes of degrees of freedom.

A Study on the Open Source License Analysis of EDISON Project (에디슨 사업의 오픈소스 라이선스 분석에 관한 연구)

  • Lee, Joon;Lee, Jeongcheol;Seo, Jeong Hyeon;Lee, Sik;Cho, Kum Won
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.9
    • /
    • pp.31-39
    • /
    • 2017
  • The open source software is widely used nowadays so that means developing software without using open source software can hardly imagine. However, the developer's recognition about the license statements that defines the requirements in accordance with the use of open source is relatively low and a few study is associated with this topic. Therefore, this study examines the use of open source in software development in the context of EDISON project in the national research and development project. Furthermore, the study attempts to suggest the advanced model from simply avoiding license conflicts to constructing the open source project ecosystem including the choose of representative open source, the development of open source communities and contributor agreements.

Identification of the most influencing parameters on the properties of corroded concrete beams using an Adaptive Neuro-Fuzzy Inference System (ANFIS)

  • Shariati, Mahdi;Mafipour, Mohammad Saeed;Haido, James H.;Yousif, Salim T.;Toghroli, Ali;Trung, Nguyen Thoi;Shariati, Ali
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.155-170
    • /
    • 2020
  • Different parameters potentially affect the properties of corroded reinforced concrete beams. However, the high number of these parameters and their dependence cause that the effectiveness of the parameters could not be simply identified. In this study, an adaptive neuro-fuzzy inference system (ANFIS) was employed to determine the most influencing parameters on the properties of the corrosion-damaged reinforced concrete beams. 207 ANFIS models were developed to analyze the collected data from 107 reinforced concrete (RC) beams. The impact of 23 input parameters on nine output factors was investigated. The results of the paper showed the order of influence of each input parameter on the outputs and revealed that the input parameters regarding the uncorroded properties of concrete beams are the most influencing factors on the corresponding corroded properties of the beams.

An Empirical Study on the Intention to Reuse Computational Science and Engineering Platforms: A Case Study of EDISON

  • On, Noori;Ryu, Gi-Myeong;Koh, Myoung-Ju;Lee, Jongsuk Ruth;Kim, Nam-Gyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3437-3456
    • /
    • 2020
  • The computational science and engineering field, which combines basic science and computing technology, has emerged as a third scientific methodology, following theories and experiments. This study aimed to identify factors and relationships that affect the continued use of the computational science and engineering (CSE) platform for its successful operation, utilization, and diffusion. To that end, the quality factors of the platform were derived by combining the information system success model and the technology acceptance model. These factors affected user satisfaction and intention to reuse through users' perceived usefulness and perceived ease of use of the platform. An empirical analysis was conducted through a questionnaire survey of 373 users of the EDISON platform, a representative CSE platform in Korea. The results revealed that all quality factors have a positive influence on perceived usefulness and perceived ease of use. Specifically, information quality has a significant influence on perceived ease of use, and system quality has a significant influence on perceived usefulness. Perceived ease of use has a greater impact on user satisfaction than perceived usefulness, and satisfaction affects intention to reuse. The results can contribute to the development of CSE platforms and the development strategy to expand the number of users.

QM and Pharmacophore based 3D-QSAR of MK886 Analogues against mPGES-1

  • Pasha, F.A.;Muddassar, M.;Jung, Hwan-Won;Yang, Beom-Seok;Lee, Cheol-Ju;Oh, Jung-Soo;Cho, Seung-Joo;Cho, Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.647-655
    • /
    • 2008
  • Microsomal prostaglandin E2 synthase (mPGES-1) is a potent target for pain and inflammation. Various QSAR (quantitative structure activity relationship) analyses used to understand the factors affecting inhibitory potency for a series of MK886 analogues. We derived four QSAR models utilizing various quantum mechanical (QM) descriptors. These QM models indicate that steric, electrostatic and hydrophobic interaction can be important factors. Common pharmacophore hypotheses (CPHs) also have studied. The QSAR model derived by best-fitted CPHs considering hydrophobic, negative group and ring effect gave a reasonable result (q2 = 0.77, r2 = 0.97 and Rtestset = 0.90). The pharmacophore-derived molecular alignment subsequently used for 3D-QSAR. The CoMFA (Comparative Molecular Field Analysis) and CoMSIA (Comparative Molecular Similarity Indices Analysis) techniques employed on same series of mPGES-1 inhibitors which gives a statistically reasonable result (CoMFA; q2 = 0.90, r2 = 0.99. CoMSIA; q2 = 0.93, r2 = 1.00). All modeling results (QM-based QSAR, pharmacophore modeling and 3D-QSAR) imply steric, electrostatic and hydrophobic contribution to the inhibitory activity. CoMFA and CoMSIA models suggest the introduction of bulky group around ring B may enhance the inhibitory activity.