• 제목/요약/키워드: Computational Intelligence

검색결과 322건 처리시간 0.036초

인공지능에 기반한 단계적 의사결정방법 : 베어링 설계에의 적용 (Stepwise Decision making Methodology Based on Artificial Intelligence: An Application to Bearing Design)

  • 서태설;한순홍
    • 한국CDE학회논문집
    • /
    • 제4권2호
    • /
    • pp.100-109
    • /
    • 1999
  • The bearing design includes the steps of selection bering type, selection bearing subtype, and determining the peripheral equipments. In this paper decision making methodologies are compared to propose a stepwise decision methodology to the bearing selection problem. An artificial neural network trained with design cases is used for selecting a bearing type in the first step. Then the subtype of the bearing is selected using the weighting method, high is a kind of multi-criteria decision making method. Finally, the types of peripheral equipments such as lubrication devices, seals and bearing housings are determined using a rule-based expert system.

  • PDF

인공신경망을 이용한 고속철도의 최고속도 예측과 구성설계 (U sing Artificial Intelligence in the Configuration Design of a High-Speed Train)

  • 이장용;한순흥
    • 한국CDE학회논문집
    • /
    • 제8권4호
    • /
    • pp.222-230
    • /
    • 2003
  • Artificial intelligence has been used in the configuration design stage of high-speed train. The traction system of a high-speed train is composed of transformers, motor blocks, and traction motors of which locations and number in the trainset should be determined in the early stage of the train conceptual design. Components of the traction system are heavy parts in the train, so it gives strong influence to the top speeds and overall train configuration of high-speed trains. Top speeds have been predicted using the neural network with the associated data of the traction system. The neural networks have been learned with data sets of many commercially operated high-speed trains, and the predicted results have been compared with the actual values. The configuration design of the train set of a high-speed train determines the basic specification of the train and layout of the traction system. The neural networks is a useful design tool when there is not sufficient data for the configuration design and we need to use the existing data of other train for the prediction of trainset in development.

Near-infrared face recognition by fusion of E-GV-LBP and FKNN

  • Li, Weisheng;Wang, Lidou
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권1호
    • /
    • pp.208-223
    • /
    • 2015
  • To solve the problem of face recognition with complex changes and further improve the efficiency, a new near-infrared face recognition algorithm which fuses E-GV-LBP and FKNN algorithm is proposed. Firstly, it transforms near infrared face image by Gabor wavelet. Then, it extracts LBP coding feature that contains space, scale and direction information. Finally, this paper introduces an improved FKNN algorithm which is based on spatial domain. The proposed approach has brought face recognition more quickly and accurately. The experiment results show that the new algorithm has improved the recognition accuracy and computing time under the near-infrared light and other complex changes. In addition, this method can be used for face recognition under visible light as well.

인공지능 기술을 이용한 최적 구조설계 (Optimal Structural Design Using Artificial Intelligence Techniques)

  • 양영순;유원선;한상민
    • 전산구조공학
    • /
    • 제11권3호
    • /
    • pp.213-228
    • /
    • 1998
  • 구조설계 과정에서 설계대안을 효율적으로 생성하여 평가하면서, 특히 다목적 환경 속에서 최적구조의 위상과 부재의 치수까지 동시에 결정할 수 있는 새로운 방식을 제시하고자 한다. 설계자가 설계대안을 생성하기 위해 설계자의 경험과 노하우를 체계적으로 구축해 놓고 이를 적절한 시기에 활용할 수 있게 하는 방법으로는 인공지능 기술의 하나인 사례기반 추론 기법을 사용하였다. 이와 더불어, 설계대안들 간의 효율적인 비교와 평가를 위해서 구조물의 계층적인 면을 고려한 새로운 유전적인 표현법을 개발하였다. 여기에 기존의 유전적 표현법을 변경시켜 생긴 여분의 효과와 계층적인 특징을 가지는 Structured Genetic Algorithm(StrGA)를 변형시켜서 사례기반 추론에 의해 생성된 설계대안들을 표현하였다. 일반적인 구조설계 과정에서는 구조물을 평가하는 기준이 여러 개가 존재하므로, 모든 대안들을 동시에 최적화 하는 과정에 Multicriteria Optimization for Genetic Algorithm(MOGA)를 병합하였다. 본 논문에서는 인공지능 기술을 이용하여 구조물의 위상설계를 할 수 있는 새로운 방법을 제안하여 그 유용성을 truss 설계문제에 대해 검토하였다.

  • PDF

Fuzzy Controller Design by Means of Genetic Optimization and NFN-Based Estimation Technique

  • Oh, Sung-Kwun;Park, Seok-Beom;Kim, Hyun-Ki
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권3호
    • /
    • pp.362-373
    • /
    • 2004
  • In this study, we introduce a noble neurogenetic approach to the design of the fuzzy controller. The design procedure dwells on the use of Computational Intelligence (CI), namely genetic algorithms and neurofuzzy networks (NFN). The crux of the design methodology is based on the selection and determination of optimal values of the scaling factors of the fuzzy controllers, which are essential to the entire optimization process. First, tuning of the scaling factors of the fuzzy controller is carried out, and then the development of a nonlinear mapping for the scaling factors is realized by using GA based NFN. The developed approach is applied to an inverted pendulum nonlinear system where we show the results of comprehensive numerical studies and carry out a detailed comparative analysis.

3D Image Correlator using Computational Integral Imaging Reconstruction Based on Modified Convolution Property of Periodic Functions

  • Jang, Jae-Young;Shin, Donghak;Lee, Byung-Gook;Hong, Suk-Pyo;Kim, Eun-Soo
    • Journal of the Optical Society of Korea
    • /
    • 제18권4호
    • /
    • pp.388-394
    • /
    • 2014
  • In this paper, we propose a three-dimensional (3D) image correlator by use of computational integral imaging reconstruction based on the modified convolution property of periodic functions (CPPF) for recognition of partially occluded objects. In the proposed correlator, elemental images of the reference and target objects are picked up by a lenslet array, and subsequently are transformed to a sub-image array which contains different perspectives according to the viewing direction. The modified version of the CPPF is applied to the sub-images. This enables us to produce the plane sub-image arrays without the magnification and superimposition processes used in the conventional methods. With the modified CPPF and the sub-image arrays, we reconstruct the reference and target plane sub-image arrays according to the reconstruction plane. 3D object recognition is performed through cross-correlations between the reference and the target plane sub-image arrays. To show the feasibility of the proposed method, some preliminary experiments on the target objects are carried out and the results are presented. Experimental results reveal that the use of plane sub-image arrays enables us to improve the correlation performance, compared to the conventional method using the computational integral imaging reconstruction algorithm.

Efficient Large Dataset Construction using Image Smoothing and Image Size Reduction

  • Jaemin HWANG;Sac LEE;Hyunwoo LEE;Seyun PARK;Jiyoung LIM
    • 한국인공지능학회지
    • /
    • 제11권1호
    • /
    • pp.17-24
    • /
    • 2023
  • With the continuous growth in the amount of data collected and analyzed, deep learning has become increasingly popular for extracting meaningful insights from various fields. However, hardware limitations pose a challenge for achieving meaningful results with limited data. To address this challenge, this paper proposes an algorithm that leverages the characteristics of convolutional neural networks (CNNs) to reduce the size of image datasets by 20% through smoothing and shrinking the size of images using color elements. The proposed algorithm reduces the learning time and, as a result, the computational load on hardware. The experiments conducted in this study show that the proposed method achieves effective learning with similar or slightly higher accuracy than the original dataset while reducing computational and time costs. This color-centric dataset construction method using image smoothing techniques can lead to more efficient learning on CNNs. This method can be applied in various applications, such as image classification and recognition, and can contribute to more efficient and cost-effective deep learning. This paper presents a promising approach to reducing the computational load and time costs associated with deep learning and provides meaningful results with limited data, enabling them to apply deep learning to a broader range of applications.

Developing drilling rate index prediction: A comparative study of RVR-IWO and RVR-SFL models for rock excavation projects

  • Hadi Fattahi;Nasim Bayat
    • Geomechanics and Engineering
    • /
    • 제36권2호
    • /
    • pp.111-119
    • /
    • 2024
  • In the realm of rock excavation projects, precise estimation of the drilling rate index stands as a pivotal factor in strategic planning and cost assessment. This study introduces and evaluates two pioneering computational intelligence models designed for the prognostication of the drilling rate index, a pivotal parameter with direct implications for cost estimation in rock excavation projects. These models, denoted as the Relevance Vector Regression (RVR) optimized with the Invasive Weed Optimization algorithm (IWO) (RVR-IWO model) and the RVR integrated with the Shuffled Frog Leaping algorithm (SFL) (RVR-SFL model), represent a groundbreaking approach to forecasting drilling rate index. The RVR-IWO and RVR-SFL models were meticulously devised to harness the capabilities of computational intelligence and optimization techniques for drilling rate index estimation. This research pioneers the integration of IWO and SFL with RVR, constituting an unprecedented effort in forecasting drilling rate index. The primary objective of this study was to gauge the precision and dependability of these models in forecasting the drilling rate index, revealing significant distinctions between the two. In terms of predictive precision, the RVR-IWO model emerged as the superior choice when compared to the RVR-SFL model, underscoring the remarkable efficacy of the Invasive Weed Optimization algorithm. The RVR-IWO model delivered noteworthy results, boasting a Variance Account for (VAF) of 0.8406, a Mean Squared Error (MSE) of 0.0114, and a Squared Correlation Coefficient (R2) of 0.9315. On the contrary, the RVR-SFL model exhibited slightly lower precision, yielding an MSE of 0.0160, a VAF of 0.8205, and an R2 of 0.9120. These findings serve to highlight the potential of the RVR-IWO model as a formidable instrument for drilling rate index prediction, particularly within the framework of rock excavation projects. This research not only makes a significant contribution to the realm of drilling engineering but also underscores the broader adaptability of the RVR-IWO model in tackling an array of challenges within the domain of rock engineering. Ultimately, this study advances the comprehension of drilling rate index estimation and imparts valuable insights into the practical implementation of computational intelligence methodologies within the realm of engineering projects.

Computational Thinking 기반 인공지능교육을 통한 학습자의 인지적역량 평가 프레임워크 설계 (Designing the Framework of Evaluation on Learner's Cognitive Skill for Artificial Intelligence Education through Computational Thinking)

  • 신승기
    • 정보교육학회논문지
    • /
    • 제24권1호
    • /
    • pp.59-69
    • /
    • 2020
  • 본 연구에서는 Computational Thinking 기반의 인공지능(AI)교육에 대한 학습자의 내재적 사고의 변화를 살펴보기 위한 평가도구 개발의 기준과 프레임워크를 구성하여 제시하고자 하였다. 이를 위해 데이터수집을 위한 인지적 학습보조(Agency)의 단계, 수집된 데이터의 특징을 분해하여 데이터의 패턴을 인식하고 카테고리화 과정을 수행하는 추상화(Abstracting)의 단계, 추상화과정을 수행한 정제된 데이터를 토대로 알고리즘을 구성하는 모델링(Modeling)단계의 일련의 순차적 과정이 평가요소로 구성되었다. 또한 학습자의 인식, 학습, 행동, 결과에 대한 인지적영역에 대한 평가가 구성되었으며, 학습자의 문제해결의 과정과 결과에 대하여 지식, 역량, 태도의 영역에 대하여 측정을 하게 됨으로써 AI교육에 대한 학습의 내재적인 인지영역의 변화와 결과에 대한 평가를 할 수 있도록 프레임 워크가 설계되었다. 연구의 결과는 교수학습의 맥락에 따른 개별화된 평가도구 개발에 대한 프레임워크를 구성하였다는 점에서 의미가 있으며, 향후 AI교육의 다양한 영역에서 활용될 수 있는 기준으로서 활용될 수 있을 것이다.

하이브리드 러닝 기반 AI 교육 시스템 구성 (Hybrid Learning-Based AI Education System Design Model)

  • 홍미선;배진아;박정환;조정원
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.188-190
    • /
    • 2022
  • 본 논문에서는 하이브리드 러닝의 목적 및 교수-학습 원리를 기반으로 AI 교육 시스템의 구성안에 대해 제안하였다. 이를 위해 하이브리드 러닝의 4가지 구성요소를 바탕으로 AI 교육을 효과적으로 운영하기 위한 온·오프라인 학습환경(메타버스 기반, 앱 기반, 면대면 기반) 등의 시스템 개념 구성도와 시스템에 필요한 DB 구성도를 설계하였다. 본 연구에서 제안한 AI 교육 시스템 모형은 학습자의 수준 및 요구에 따라 AI 교육의 효과성을 극대화하고 AI 교육을 통한 컴퓨팅 사고력 함양에 있어 더 효과적인 학습자 중심의 학습 환경을 구축하는 데 도움이 될 것으로 기대한다.

  • PDF