• Title/Summary/Keyword: Computational Intelligence

Search Result 322, Processing Time 0.03 seconds

Deep Level Situation Understanding for Casual Communication in Humans-Robots Interaction

  • Tang, Yongkang;Dong, Fangyan;Yoichi, Yamazaki;Shibata, Takanori;Hirota, Kaoru
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • A concept of Deep Level Situation Understanding is proposed to realize human-like natural communication (called casual communication) among multi-agent (e.g., humans and robots/machines), where the deep level situation understanding consists of surface level understanding (such as gesture/posture understanding, facial expression understanding, speech/voice understanding), emotion understanding, intention understanding, and atmosphere understanding by applying customized knowledge of each agent and by taking considerations of thoughtfulness. The proposal aims to reduce burden of humans in humans-robots interaction, so as to realize harmonious communication by excluding unnecessary troubles or misunderstandings among agents, and finally helps to create a peaceful, happy, and prosperous humans-robots society. A simulated experiment is carried out to validate the deep level situation understanding system on a scenario where meeting-room reservation is done between a human employee and a secretary-robot. The proposed deep level situation understanding system aims to be applied in service robot systems for smoothing the communication and avoiding misunderstanding among agents.

Robust human tracking via key face information

  • Li, Weisheng;Li, Xinyi;Zhou, Lifang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.5112-5128
    • /
    • 2016
  • Tracking human body is an important problem in computer vision field. Tracking failures caused by occlusion can lead to wrong rectification of the target position. In this paper, a robust human tracking algorithm is proposed to address the problem of occlusion, rotation and improve the tracking accuracy. It is based on Tracking-Learning-Detection framework. The key auxiliary information is used in the framework which motivated by the fact that a tracking target is usually embedded in the context that provides useful information. First, face localization method is utilized to find key face location information. Second, the relative position relationship is established between the auxiliary information and the target location. With the relevant model, the key face information will get the current target position when a target has disappeared. Thus, the target can be stably tracked even when it is partially or fully occluded. Experiments are conducted in various challenging videos. In conjunction with online update, the results demonstrate that the proposed method outperforms the traditional TLD algorithm, and it has a relatively better tracking performance than other state-of-the-art methods.

Optimal LEACH Protocol with Improved Bat Algorithm in Wireless Sensor Networks

  • Cai, Xingjuan;Sun, Youqiang;Cui, Zhihua;Zhang, Wensheng;Chen, Jinjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2469-2490
    • /
    • 2019
  • A low-energy adaptive clustering hierarchy (LEACH) protocol is a low-power adaptive cluster routing protocol which was proposed by MIT's Chandrakasan for sensor networks. In the LEACH protocol, the selection mode of cluster-head nodes is a random selection of cycles, which may result in uneven distribution of nodal energy and reduce the lifetime of the entire network. Hence, we propose a new selection method to enhance the lifetime of network, in this selection function, the energy consumed between nodes in the clusters and the power consumed by the transfer between the cluster head and the base station are considered at the same time. Meanwhile, the improved FTBA algorithm integrating the curve strategy is proposed to enhance local and global search capabilities. Then we combine the improved BA with LEACH, and use the intelligent algorithm to select the cluster head. Experiment results show that the improved BA has stronger optimization ability than other optimization algorithms, which the method we proposed (FTBA-TC-LEACH) is superior than the LEACH and LEACH with standard BA (SBA-LEACH). The FTBA-TC-LEACH can obviously reduce network energy consumption and enhance the lifetime of wireless sensor networks (WSNs).

Knowledge-guided artificial intelligence technologies for decoding complex multiomics interactions in cells

  • Lee, Dohoon;Kim, Sun
    • Clinical and Experimental Pediatrics
    • /
    • v.65 no.5
    • /
    • pp.239-249
    • /
    • 2022
  • Cells survive and proliferate through complex interactions among diverse molecules across multiomics layers. Conventional experimental approaches for identifying these interactions have built a firm foundation for molecular biology, but their scalability is gradually becoming inadequate compared to the rapid accumulation of multiomics data measured by high-throughput technologies. Therefore, the need for data-driven computational modeling of interactions within cells has been highlighted in recent years. The complexity of multiomics interactions is primarily due to their nonlinearity. That is, their accurate modeling requires intricate conditional dependencies, synergies, or antagonisms between considered genes or proteins, which retard experimental validations. Artificial intelligence (AI) technologies, including deep learning models, are optimal choices for handling complex nonlinear relationships between features that are scalable and produce large amounts of data. Thus, they have great potential for modeling multiomics interactions. Although there exist many AI-driven models for computational biology applications, relatively few explicitly incorporate the prior knowledge within model architectures or training procedures. Such guidance of models by domain knowledge will greatly reduce the amount of data needed to train models and constrain their vast expressive powers to focus on the biologically relevant space. Therefore, it can enhance a model's interpretability, reduce spurious interactions, and prove its validity and utility. Thus, to facilitate further development of knowledge-guided AI technologies for the modeling of multiomics interactions, here we review representative bioinformatics applications of deep learning models for multiomics interactions developed to date by categorizing them by guidance mode.

Design of Artificial Intelligence Education Program for Elementary School Students based on Localized Public Data (지역화 공공데이터 기반 초등학생 인공지능 교육 프로그램 설계)

  • Ko, EunJung;Kim, BomSol;Oh, JeongCheol;Kim, JungHoon
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.1-6
    • /
    • 2021
  • This study designed an artificial intelligence education program using localized public data as an educational method for improving computational thinking in elementary school students. Program design and development was carried out based on the results of pre-requisite analysis on elementary school students according to the ADDIE model. Based on localized public data, the program was organized to learn the principles of artificial intelligence by utilizing "Machine Learning for Kids" and "Scratch" and to solve problems and improve computational thinking skills through abstracting public data for purpose.Through subsequent research, it is necessary to put this education program into the field and verify the change in students' computational thinking as a result.

  • PDF

Design of Machine Learning Education Program for Elementary School Students Based on Sound Data (소리 데이터를 활용한 블록 기반의 초등 머신러닝 교육 프로그램 설계)

  • Ko, Seunghwan;Lee, Junho;Moon, Woojong;Kim, Jonghoon
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.7-11
    • /
    • 2021
  • This study designs block-based machine learning education program using sound data that can be easily applied in elementary schools. The education program designed its goals and directions based on the results of a demand analysis conducted on 70 elementary school teachers in advance according to the ADDIE model. Scratch in Machine Learning for Kids was used for block-based programming, and the education program was designed to discover regularity of data values using sound data, learn the principles of artificial intelligence, and improve computational thinking in the programming process. In a later study, the education program needs to verify what changes there are in attitudes and computational thinking about artificial intelligence.

  • PDF

Transforming mathematics education with AI: Innovations, implementations, and insights

  • Sheunghyun Yeo;Jewoong Moon;Dong-Joong Kim
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.387-392
    • /
    • 2024
  • The use of artificial intelligence (AI) in mathematics education has advanced as a means for promoting understanding of mathematical concepts, academic achievement, computational thinking, and problem-solving. From a total of 13 studies in this special issue, this editorial reveals threads of potential and future directions to advance mathematics education with the integration of AI. We generated five themes as follows: (1) using ChatGPT for learning mathematical content, (2) automated grading systems, (3) statistical literacy and computational thinking, (4) integration of AI and digital technology into mathematics lessons and resources, and (5) teachers' perceptions of AI education. These themes elaborate on the benefits and opportunities of integrating AI in teaching and learning mathematics. In addition, the themes suggest practical implementations of AI for developing students' computational thinking and teachers' expertise.

Computational Integral Imaging Reconstruction of a Partially Occluded Three-Dimensional Object Using an Image Inpainting Technique

  • Lee, Byung-Gook;Ko, Bumseok;Lee, Sukho;Shin, Donghak
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.248-254
    • /
    • 2015
  • In this paper we propose an improved version of the computational integral imaging reconstruction (CIIR) for visualizing a partially occluded object by utilizing an image inpainting technique. In the proposed method the elemental images for a partially occluded three-dimensional (3D) object are recorded through the integral imaging pickup process. Next, the depth of occlusion within the elemental images is estimated using two different CIIR methods, and the weight mask pattern for occlusion is generated. After that, we apply our image inpainting technique to the recorded elemental images to fill in the occluding area with reliable data, using information from neighboring pixels. Finally, the inpainted elemental images for the occluded region are reconstructed using the CIIR process. To verify the validity of the proposed system, we carry out preliminary experiments in which faces are the objects. The experimental results reveal that the proposed system can dramatically improve the quality of a reconstructed CIIR image.