• Title/Summary/Keyword: Computational Fluid Dynamics Simulation

Search Result 992, Processing Time 0.022 seconds

Numerical Analysis of Thermal Environments and Comfort for Local Air Conditioning System (수치해석에 의한 국부냉방시스템의 온열환경 및 쾌적성 분석)

  • 엄태인;경남호;신기식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.4
    • /
    • pp.318-328
    • /
    • 2003
  • Numerical simulation using computational fluid dynamics (CFD) is performed to calculate the velocities and temperature profiles of air in adjacent to a worker within the individual local air conditioning system. The calculation domain is the space of ㄴ between walls and a worker in the climate room. The fresh air is supplied from the three different inlets located on the right, left and center wall in the climate room. In this study, the calculated data of velocities and temperature profiles of air in the nearest the skin of a worker are used to calculate the PMV (Predicted Mean Vote) for evaluation of thermal comfort of a worker in the local air conditioning system. Because the data of veto-cities temperature profiles of air in adjacent to a worker and the PMV of a worker are the design parameters of the local air conditioning system. The results of calculation show that the fresh air velocity and injection position are closely related to the PMV value. In individual air condition system of ㄴ, the appropriate PMV are obtained when the fresh air velocity and position are 1.0 m/s, throat of a worker and are 1.5 m/s, head of a worker, respectively. The method of numerical calculation is effective to obtain the optimum velocity and position of the fresh air for optimum the PMV and energy saving in individual local air conditioning system.

CFD Simulation of Pd-Ag Membrane Process for $CO_2$ Separation (이산화탄소 분리를 위한 Pd-Ag 분리막 공정의 CFD 모사)

  • Oh, Min;Park, Junyong;Noh, Seunghyo;Hong, Seong Uk
    • Applied Chemistry for Engineering
    • /
    • v.20 no.1
    • /
    • pp.104-108
    • /
    • 2009
  • In this study, for the flow of carbon dioxide/hydrogen mixture through a tubular type Pd-Ag membrane, hydrogen partial pressure, velocity profile, and concentration profile were simulated as a function of inlet flow rate using computational fluid dynamics (CFD) technique. The simulation results indicated that the mole fraction of carbon dioxide increased slowly in the longitudinal direction as the flow rate increased. In addition, the effects of inlet flow rate and the length of membrane on hydrogen recovery were investigated. At lower flow rate and for longer membrane, the hydrogen recovery was larger.

Unsteady Analysis of Hydraulic Behavior Characteristics in Water Treatment System Using CFD Simulation (CFD를 이용한 정수처리 공정 내 유량변동시 수리흐름 해석에 관한 연구)

  • Kim, Seong-Su;Choi, Jong-Woong;Park, No-Suk;Wang, Chang-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.2
    • /
    • pp.215-222
    • /
    • 2013
  • The fluctuation of inlet flow to a water treatment plant makes a serious problem that it can change the outlet flowrate from each process abruptly. Since it takes very short time for the surface wave occurred from the fluctuation of inlet flow to reach the latter processes, it is impossible for operators to cope with that stably. In order to investigate the characteristics of hydraulic behavior for rectangular sedimentation basin in water treatment plant, CFD(Computational Fluid Dynamics) simulation were employed. From the results of both CFD simulations, it was confirmed that time taken for the follow-up processes by the fluctuation in intake well can be estimated by the propagation velocity of surface waves. Also, it takes very short time for the surface wave occurred from the fluctuation of inlet flow to reach the latter processes. In the case of inlet flowerate being increased sharply, local velocity within sedimentation basin appeared as wave pattern and increased due to convection current. Also, it could be observed that vortex made local velocity in the vicinity of bottom rise.

Fire at an Indoor Shooting Range in Busan I. Fire Reconstruction (부산 실내사격장 화재 I. 화재재현)

  • Park, Woe-Chul
    • Fire Science and Engineering
    • /
    • v.24 no.2
    • /
    • pp.114-119
    • /
    • 2010
  • The fire at a Busan indoor shooting range on November 14, 2009 was reconstructed by using a computational fluid dynamics model for fire simulations, in order to investigate the cause of the heavy death toll in a short period of time. Spread of the flame and smoke, and temperature distribution obtained by fire simulation were compared with the results of fire investigation based on the CCTV recordings. The flame and smoke flew out violently through the door into the cafeteria from the shooting range, and the cafeteria was filled with smoke just within 3 seconds followed by the onset of fire. This is consistent with the CCTV recordings. It was confirmed, as a result, that people in the cafeteria did not have enough evacuation time. The computed temperature at the door knob reached about $1400^{\circ}C$, near its melting point.

CFD Analysis of the Inertial Impaction Pre-Filter for a Particulate Matter Collecting Device (미세먼지 포집장치 개발을 위한 관성충돌 프리필터 유동 전산해석)

  • Kyung, Dae Seung;Hwang, Dae Sung
    • Land and Housing Review
    • /
    • v.10 no.2
    • /
    • pp.53-58
    • /
    • 2019
  • Particulate matter (PM) is designated as a group 1 carcinogen by the International Agency for Research on Cancer (IARC) of the World Health Organization (WHO). In South Korea, the health threat caused by PM is the most serious level internationally. Therefore, in order to solve the urban PM problem, it is important to develop the technology that can control PM efficiently. In this study, CFD(Computational Fluid Dynamics) simulation was performed for PM pre-filter (type 1-3 with different PM collecting room) to develop a high-efficiency PM collecting device. The complex flow field and the local flow phenomenon inside the PM collecting device were understood with CFD simulation by changing the shape and size of the pre-filter. The PM removal performance can be described with flow rate through the device and PM removal efficiency. The type-1 pre-filter with 5x5 size collecting room was confirmed to have the highest efficiency. Based on the analysis results, the optimal type of pre-filter could be developed and it would be applied as an element technology included in the PM collecting device.

Two-Phase Flow Field Simulation of Horizontal Steam Generators

  • Rabiee, Ataollah;Kamalinia, Amir Hossein;Hadad, Kamal
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.92-102
    • /
    • 2017
  • The analysis of steam generators as an interface between primary and secondary circuits in light water nuclear power plants is crucial in terms of safety and design issues. VVER-1000 nuclear power plants use horizontal steam generators which demand a detailed thermal hydraulics investigation in order to predict their behavior during normal and transient operational conditions. Two phase flow field simulation on adjacent tube bundles is important in obtaining logical numerical results. However, the complexity of the tube bundles, due to geometry and arrangement, makes it complicated. Employment of porous media is suggested to simplify numerical modeling. This study presents the use of porous media to simulate the tube bundles within a general-purpose computational fluid dynamics code. Solved governing equations are generalized phase continuity, momentum, and energy equations. Boundary conditions, as one of the main challenges in this numerical analysis, are optimized. The model has been verified and tuned by simple two-dimensional geometry. It is shown that the obtained vapor volume fraction near the cold and hot collectors predict the experimental results more accurately than in previous studies.

Analysis of Flow Characteristics of Forced Ventilated Pre-drying Facility for Mandarin (강제 통풍식 감귤 예건시설의 유동 해석)

  • Kwon, Jin-Kyung;Yun, Hong-Sun;Jeong, Hoon;Lee, Hyun-Dong;Lee, Sung-Hyoun;Moon, Jong-Pil
    • Journal of Biosystems Engineering
    • /
    • v.35 no.6
    • /
    • pp.393-400
    • /
    • 2010
  • Uniform and rapid pre-drying of mandarin is important to improve the storage quality. The aim of this study was to suggest the basic design of forced ventilated pre-drying facility for mandarin by thermal flow analysis using computational fluid dynamics software (FLUENT 6.2). Developed CFD simulation model was verified by comparison with experimental data. Airflows and temperature distributions in the five conceptional designs including existing ordinary temperature storage rooms were analyzed and appropriate basic design was determined. Analysis of the effect of arrangement of windows and exhaust fans on thermal flow in facility was carried out for more detailed design. The results of this investigation showed that the predicted airflow velocity by CFD simulation showed a good agreement with the measured value and optimum design condition for simulated forced ventilated pre-drying facility of mandarin has two exhaust fans and two windows on both sidewalls and cover on loaded mandarin.

Flow Characteristics Analyses within the Electrolysis Reactor using the CFD Simulation Technique (CFD 모사 기법을 이용한 전해반응기 내부 흐름 특성 분석)

  • Jeong, Jongsik;Lee, Seungjae;Lee, Jaebok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.745-753
    • /
    • 2016
  • The objective of this study was to investigate design factors of the electrolysis reactor through the CFD(computational fluid dynamics) simulation technique. Analyses of velocity vector, streamline, chloride ion concentration distribution showed differences in flow characteristics between the plate type electrode and the porous plate type electrode. In case of the porous plate type electrode, chlorine gas bubbles generated from the anode made upward density flow with relatively constant velocity vectors. Electrolysis effect was more expected with the porous plate type electrode from the distribution of chloride ion concentration. The upper part of the electrolysis reactor with the porous plate type electrode had comparatively low chloride concentration because chloride was converted to the chlorine gas formation. Decreasing the size and increasing total area of rectifying holes in the upper part of cathodes, and widening the area of the rectifying holes in the lower part of cathodes could improve the circulation flow and the efficiency of electrolysis reactor.

Application of Store Separation Wind Tunnel Test Technique into CFD (외장분리 풍동시험 기법의 전산유체해석 적용)

  • Son, Chang-Hyeon;Kim, Sang-Hun;Woo, Heekyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.4
    • /
    • pp.263-272
    • /
    • 2021
  • In this study, aerodynamic coefficients obtained from Computational Fluid Dynamics (CFD) using wind tunnel test-like method is compared with coefficients obtained by actual wind tunnel test. Unsteady analysis has performed with using harmonic equation for motion of the external store. Aerodynamic database is generated based on CFD results to simulate 6 degree-of-freedom store separation analysis. Trajectory is obtained from simulation using both CFD-based and test-based database, and results are compared with trajectory from flight test result. It is concluded that generation of database based on CFD with wind tunnel test technique is valid from good agreement of the trajectory.

A Study on the Internal Flow Analysis in Swash Plate Piston Pump for Marine Hydraulic Power Supply (선박 유압공급 장치용 사판식 유압 피스톤 펌프 내부 유동해석에 관한 연구)

  • Yi, Chung-Seob;Lee, Jeong-Sil;Lim, Jong-hak;Gwak, Beom-Seop;Lee, Ho Seong;Song, Chul Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.34-40
    • /
    • 2022
  • In this paper, a flow analysis of a swash-plate type hydraulic piston pump installed on a hydraulic flow supply system for marine vessels is presented. A model and governing equations for computational fluid dynamics (CFD) analyses of swash-plate type hydraulic piston pumps were built, and simulation results regarding the internal flow field of the pump were obtained. By analyzing the internal flow of the swash-plate type hydraulic piston pump, we can confirm the time-dependent stroke of each piston as the pump rotates. We also verified that by analyzing the pulsating flow against the slope of the swash plate, the simulation results match well with the experimental results. The natural frequency of the system was computed to be approximately 380 Hz by applying and analyzing the fast Fourier transform (FFT) of each swash plate slope evaluated.