• Title/Summary/Keyword: Computational Education

Search Result 1,110, Processing Time 0.025 seconds

A Study on the Development and Implementation of Computational Thinking Education Framework

  • Choe, Hyun-Jong;Lee, Tae-Wuk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.9
    • /
    • pp.177-182
    • /
    • 2016
  • In this paper, we propose the computational thinking education framework which provides three steps of computational thinking process and three kind of activities about computational thinking learning in class. The key idea of this framework is to provide the guidelines of designing activity steps of teaching and learning computational thinking in class using three axles of framework such as problem area, process of learning, and steps of computational thinking process. After designing a framework, we show that sample course of programming education program containing contents of Informatics subject in middle school by implementing our framework. Proposed framework and programming education program in middle school will be the good case study and guide to implement computational thinking concerned education programs in elementary, secondary, and universities.

Design-Based Learning for Computational Thinking (Computational Thinking 향상을 위한 디자인기반 학습)

  • Kim, Soohwan;Han, Seonkwan
    • Journal of The Korean Association of Information Education
    • /
    • v.16 no.3
    • /
    • pp.319-326
    • /
    • 2012
  • In this paper, we studied a design-based learning for Computational Thinking in Computational Literacy. The design-based learning for computational thinking in computational literacy education started from a MIT media laboratory in 2011. We revised the design-based learning and applied it to educational field. We considered educational strategies and derived the implications, after teaching fourth grade gifted students. Moreover we conducted and analyzed a questionnaire survey, observations and interviews. As the result, the design-based learning in computational literacy is effective for creative computational thinking that students create their ideas and make a meaningful artifacts from it. We expect that this study provides the basic data to apply a design-based learning for computational thinking to Computer education.

  • PDF

Bringing Computational Thinking into Science Education

  • Park, Young-Shin;Green, James
    • Journal of the Korean earth science society
    • /
    • v.40 no.4
    • /
    • pp.340-352
    • /
    • 2019
  • The purpose of science education is scientific literacy, which is extended in its meaning in the $21^{st}$ century. Students must be equipped with the skills necessary to solve problems from the community beyond obtaining the knowledge from curiosity, which is called 'computational thinking'. In this paper, the authors tried to define computational thinking in science education from the view of scientific literacy in the $21^{st}$ century; (1) computational thinking is an explicit skill shown in the two steps of abstracting the problems and automating solutions, (2) computational thinking consists of concrete components and practices which are observable and measurable, (3) computational thinking is a catalyst for STEAM (Science, Technology, Engineering, Arts, and Mathematics) education, and (4) computational thinking is a cognitive process to be learned. More implication about the necessity of including computational thinking and its emphasis in implementing in science teaching and learning for the envisioned scientific literacy is added.

Analysis about the Initial Process of Learning Transfer in Computational Thinking Education (Computational Thinking 교육에서 나타난 초기 학습전이에 대한 분석)

  • Kim, Soohwan
    • The Journal of Korean Association of Computer Education
    • /
    • v.20 no.6
    • /
    • pp.61-69
    • /
    • 2017
  • The Goal of SW education is to improve computational thinking. Especially, non computer majors need to apply computational thinking to their problem solving in their fields after computational thinking class. In this paper, we verified what factors affect the improvement of computational thinking through mixed research method after teaching computational thinking to non major students. Also, we analysed the characteristics of initial learning transfer of computational thinking, and establish the reason about he validity and justification for non major in SW education. The result shows learning satisfaction, learning transfer motivation, and self-CT efficacy affect the perception about improvement of computational thinking. Also, we found that there is application of computational thinking was coming up with problem solving process because the initial learning transfer process of computational thinking has characteristics about concepts and practices of it in programming steps. The effectiveness and learning transfer process of computational thinking for non majors will give the validity and justification to teach SW education for all students.

Designing the Instructional Framework and Cognitive Learning Environment for Artificial Intelligence Education through Computational Thinking (Computational Thinking 기반의 인공지능교육 프레임워크 및 인지적학습환경 설계)

  • Shin, Seungki
    • Journal of The Korean Association of Information Education
    • /
    • v.23 no.6
    • /
    • pp.639-653
    • /
    • 2019
  • The purpose of this study is to design an instructional framework and cognitive learning environment for AI education based on computational thinking in order to ground the theoretical rationale for AI education. Based on the literature review, the learning model is proposed to select the algorithms and problem-solving models through the abstraction process at the stage of data collection and discovery. Meanwhile, the instructional model of AI education through computational thinking is suggested to enhance the problem-solving ability using the AI by performing the processes of problem-solving and prediction based on the stages of automating and evaluating the selected algorithms. By analyzing the research related to the cognitive learning environment for AI education, the instructional framework was composed mainly of abstraction which is the core thinking process of computational thinking through the transition from the stage of the agency to modeling. The instructional framework of AI education and the process of constructing the cognitive learning environment presented in this study are characterized in that they are based on computational thinking, and those are expected to be the basis of further research for the instructional design of AI education.

A Study on Learner's Characteristics and Programming Skill in Computational Literacy Education - Focus on learning style and multiple intelligence - (Computational Literacy 교육에서 프로그래밍 능력과 학습자 특성에 관한 연구 - 학습스타일과 다중지능을 중심으로 -)

  • Kim, Soo-Hwan;Han, Seon-Kwan;Kim, Hyeon-Cheol
    • The Journal of Korean Association of Computer Education
    • /
    • v.13 no.2
    • /
    • pp.15-23
    • /
    • 2010
  • Computational Literacy education is being required in current digital age, but the educational strategy of it is lacking. In traditional education, instructors have been teaching by considering learners' characteristics for effective learning. It is necessary to investigate their characteristics for applying this method to computational literacy education. Therefore, we taught programming that is main area on computational literacy, and analyzed learners' characteristics focused on Felder's learning style and multiple intelligence. That is, we taught 194 university students computational literacy with scratch that was one of the popular educational programming languages, and analyzed the relation among learning style, multiple intelligence and the students' programming performance. Also, we found considerations through comparing students' characteristics with experts' ones.

  • PDF

On the Direction of the Application of the Concepts of Computational Thinking for Elementary Education (Computational Thinking의 초등교육 활용 방향)

  • Moon, Gyo Sik
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.6
    • /
    • pp.518-526
    • /
    • 2013
  • The notion of computational thinking is currently gaining much attention from a variety of disciplines. Accordingly, computer education community needs to address this issue for formal education. In the paper, the translation issue on the terminology - 'computational thinking' - is discussed. As a brief introduction to computational thinking the characteristics and necessities as well as its importance are presented. The types of learning computational thinking are presented, which are learning with computing tools on one hand and without them on the other hand. Furthermore, learning objectives of computational thinking as well as the contents are also investigated for the application of computational thinking in elementary education. A survey was conducted for thirty three elementary school teachers on behalf of investigating directions of teaching computational thinking in elementary education. It shows that almost all respondents agree to teaching computational thinking in formal education and it also shows other interesting results as stated in the paper.

Analysis on Trend of Study Related to Computational Thinking Using Topic Modeling (토픽 모델링을 이용한 컴퓨팅 사고력 관련 연구 동향 분석)

  • Moon, Seong-Yun;Song, Ki-Sang
    • Journal of The Korean Association of Information Education
    • /
    • v.23 no.6
    • /
    • pp.607-619
    • /
    • 2019
  • As software education was introduced through the 2015 revised curriculum, various research activities have been carried out to improve the computational thinking of learners beyond the existing ICT literacy and software utilization education. With this change, the purpose of this study is to examine the research trends of various research activities related to computational thinking which is emphasized in software education. To this end, we extracted the key words from 190 papers related to computational thinking subject published from January 2014 to September 2019, and conducted frequency analysis, word cloud, connection centrality, and topic modeling analysis on the words. As a result of the topical modeling analysis, we found that the main studies so far have included studies on 'computational thinking education program', 'computational thinking education for pre-service teacher education', 'robot utilization education for computational thinking', 'assessment of computational thinking', and 'computational thinking connected education'. Through this research method, it was possible to grasp the research trend related to computational thinking that has been conducted mainly up to now, and it is possible to know which part of computational thinking education is more important to researchers.

The Concept of Computational Thinking through Analysis of Computer Education Framework in the United States and its Implications for the Curriculum of Software Education (미국 컴퓨터교육 프레임워크 분석을 통한 Computational Thinking의 개념과 교육과정 편성의 시사점 분석)

  • Shin, Seungki;Bae, Youngkwon
    • Journal of The Korean Association of Information Education
    • /
    • v.22 no.2
    • /
    • pp.251-262
    • /
    • 2018
  • In this study, we conducted to derive some implications by analyzing the computer education framework proposed by K12CS in the United States in order to organize the software curriculum and conceptualization of computational thinking in Korea. First, we discussed the use of the term Computational Thinking as a Computing Thinking in Korea and compare it with the concept presented in the US curriculum. we derived that Computing Thinking and Computational Thinking are different in the focus and scope of problem solving. Second, considering the fact that Korean software curriculum does not consider the hierarchy according to the school and the grade, we reconstructed the curriculum based on the core practices and concepts which were suggested by the organization of K-12 Computer Science in the United States.

An Analysis of 'Informatics' Curriculum from the Perspective of $21^{st}$ Century Skills and Computational Thinking ($21^{st}$ Century Skills와 Computational Thinking 관점에서의 '정보' 교육과정 분석)

  • Choi, Sook-Young
    • The Journal of Korean Association of Computer Education
    • /
    • v.14 no.6
    • /
    • pp.19-30
    • /
    • 2011
  • This study analyzed characteristics of computer education from the perspective of $21^{st}$ Century Skills and Computational thinking. $21^{st}$ Century Skills are essential skills for success in today's world. They include critical thinking, problem solving, communication and collaboration. Computational thinking is a necessary ability in the age of convergence and a core concept of computer science education. This study first examined characteristics of $21^{st}$ Century Skills and Computational thinking. Then, it analyzed the relationship between these two skills and 'Informatics' curriculum. 'Informatics' is an elective course in K-12. The results of this study emphasized the importance and the necessity of computer education in the K-12 level.

  • PDF