심전도(ECG) 신호에서 R-피크를 추출하는 기법에 대하여 많은 연구가 진행 되어 왔으며, 다양한 방법으로 구현되어 왔다. 그러나 이러한 검출 방법 대부분은 실시간 휴대용 심전도 장치에서 구현하기가 복잡하고 어려운 단점이 있다. R-피크 검출을 위해서는 심전도 데이터에 대하여 베이스라인 드리프트 및 상용전원 잡음 제거 등의 적절한 전처리 및 후가공이 필요하며, 특히 적응형 필터를 활용한 기법에서는 적절한 임계값을 선택하는 것이 중요하다. 적응형 필터의 임계값을 추출하는 방식에서는 고정형(Fixed) 및 적응형(adaptive)으로 구분할 수 있다. 고정 임계 값 추출 방식은 고정된 임계값 보다 낮은 값의 입력이 들어오는 경우에 R-피크 값을 감지하지 못하는 경우가 있으며, 적응 임계값 추출 방식은 때때로 잡음에 의한 잘못된 임계값을 도출하여, 다른 파형(P혹은 T파)의 피크를 감지하는 경우도 나타난다. 본 논문에서는 계산상의 복잡성이 적고, 코드 구현이 단순하면서도 잡음에 강인한 R-피크 검출 알고리즘을 제안한다. 제안된 방식은 앞서 설명한 임계값 추출 문제를 해결하기 위해서, 적응형 필터를 사용해, 심전도 신호에서 베이스 라인 드리프트 제거를 하여 적절한 임계값을 계산하도록 한다. 그리고 필터 처리된 심전도 신호의 최소 값과 최대 값을 사용하여 적절한 임계값이 자동으로 추출 되도록 한다. 그런 다음 심전도 신호로부터 R-피크를 검출하기 위해 임계값 아래에서 'neighborhood searching' 기법이 적용된다. 제안된 방법은 R-피크 검출의 정확도를 향상시키고, 계산 량을 줄여 검출 속도가 보다 빨라지도록 하였다. 다음으로 R-피크 값이 검출 되면, R-R interval 등의 값을 이용해 심박 수를 계산할 수 있도록 한다. 실험결과 심박 수 검출 정확도와 감도가 약 100%로 매우 높았음을 확인할 수 있었다.
본 연구에서는 임진강 상류유역과 같이 수리수문학적 분석에 필요한 측정데이터가 존재하지 않거나 혹은 데이터의 확보가 어려운 유역에 대하여 위성 데이터와 데이터 기반 모형을 활용하여 유출량을 산정하였다. SDF 시그널(Satellite-derived Flow Signal)은 하도내의 유량변화에 따른 하천 폭의 변화를 반영할 수 있다고 알려져 있으며, 그 상관관계는 하도단면의 형태와 밀접한 관계가 있다. SDF 시그널 데이터와 유출량 간의 비선형 상관관계를 반영할 수 있는 인공신경망 모형을 활용하여, 모형의 입력변수인 SDF 시그널 데이터로부터 임진강의 임진교 지점에서의 유출량을 추정하였다. 15개의 위성 이미지 픽셀의 SDF 시그널 값이 0~10일의 lag가 되어 활용되었으며, lag된 데이터를 포함하여 총 150개의 변수 중 유출량과 가장 큰 관계가 있는 변수 선정을 위해 PMI(Partial Mutual Information) 기법이 활용되었다. 인공신경망 모형을 통해 산정된 유출량은 임진교에서 측정된 지점 유출량과 비교 분석되었으며, 학습(training)과 검증(validation)을 통한 상관계수는 각각 0.86, 0.72로 좋은 결과를 보여주었다. 추가적으로 SDF 시그널 데이터 외에 임진교의 1일 전 측정유량이 인공신경망 입력변수로 추가되었을 때 상관계수가 0.90, 0.83으로 증가함을 보였다. 결과로부터 계측수문자료가 부족하거나 접근 불가능한 유역에 대하여 하천 유량 변화에 대한 추정치인 SDF 시그널 데이터와 지상 데이터가 결합되었을 때 신뢰성 높은 유역의 유출량을 산정할 수 있으며, 큰 유량이 발생하는 홍수사상에 대해서도 첨두 유량과 첨두 발생시간을 잘 모의할 수 있음을 알 수 있었다. 향후 위성 데이터와 지점 데이터를 활용하여 미계측 유역의 홍수발생에 대하여 높은 정확도로 예측 가능할 것으로 기대한다.
지난 수년간 KISTI는 EDISON이라는 온라인 시뮬레이션 실행 플랫폼을 통해 사용자들이 다양한 계산과학공학 분야에서 제공된 사이언스 애플리케이션에 대한 시뮬레이션을 수행할 수 있는 서비스를 제공하고 있다. 일반적으로 이러한 시뮬레이션은 대규모 계산을 수반하므로 대용량의 출력 데이터를 생산해 낸다. 온라인 플랫폼에서 이러한 시뮬레이션을 수행 할 때 발생하는 중요한 문제 중 하나는 많은 사용자가 동일한 (또는 거의 변하지 않는) 입력 매개 변수 또는 파일을 사용하여 시뮬레이션 요청 (또는 작업)을 플랫폼에 동시에 제출함으로써 플랫폼에 상당한 부담을 준다는 점이다. 다시 말해, 동일한 컴퓨팅 작업으로 인해 중복 컴퓨팅 및 스토리지 리소스가 빠른 속도로 소모된다는 점이다. 이와 같은 동일한 시뮬레이션 요청으로 인한 과도한 자원 사용 문제를 극복하기 위해, 본 논문은 실행 메타 데이터, 즉 프로비넌스를 기반으로 시뮬레이션 데이터를 효율적으로 관리하기 위한 IceSheet라는 새로운 프레임 워크를 제안한다. IceSheet 프레임워크는 시뮬레이션 실행과 관련된 프로비넌스를 수집하여 저장한다. 수집된 프로비넌스 정보는 중복 시뮬레이션 요청을 제외할 뿐만 아니라 오픈소스 검색 엔진인 ElasticSearch를 통해 기존 시뮬레이션 결과를 검색하는 데도 사용된다. 특히 본 논문은 IceSheet 프레임워크에서 저장된 시뮬레이션 결과를 검색하고 재사용할 수 있는 핵심 구성 요소에 대해 자세히 설명한다. 우리는 온라인 시뮬레이션 실행 플랫폼과 함께 연동하는 검색 엔진을 기반으로 제안된 프레임워크의 프로토타입을 구현하였다. 플랫폼에서 수집된 실제 시뮬레이션 실행 프로비넌스를 기반으로 제안된 프레임워크의 성능 평가를 수행하였다. 플랫폼과 완벽히 연동된 IceSheet 프레임워크는 사용자로 하여금 선택된 시뮬레이션 소프트웨어에 대해 과거에 입력된 매개 변수 값을 빠르게 검색하고 동일한 입력 매개 변수 값이 존재하는 경우 기존의 결과를 곧바로 반환할 수 있도록 할 것으로 기대된다. 따라서 제안된 프레임워크를 통해 이전에 실행된 시뮬레이션과 동일한 요청에 대해 중복 자원 소모를 없애고 실행 시간을 크게 단축시키는 데 도움이 될 것으로 기대한다.
개방병원에 환자의 입원을 의뢰한 담당 의사들은 환자들의 상태와 제대로 된 간호서비스를 받고 있는지에 대한 정보를 간호기록을 열람함으로써 확인할 수 있다. 하지만 간호기록은 병원의 내부자료로써 외부기관에 쉽게 공개할 수 없는 자료이고 표준화가 확립되어 있지 않아 병원별로 다르게 작성되고 있어 필요한 정보를 공유하는데 많은 어려움이 따른다. 따라서 본 연구에서는 개방병원 간호기록의 작성과 공유를 지원하기 위한 시스템을 개발하고자 하였다. 본 시스템은 우선 간호기록을 실제로 작성하는 간호사의 편의성을 고려하여 간호기록항목사전을 설정하게 하고 간호사와 의사간의 지능형 에이전트를 이용한 협상으로 작성과 공개의 항목을 확정하도록 하였다. 이 모든 과정은 의료기관간의 네트워킹을 지원할 수 있도록 웹기반시스템으로 설계되었고 실제 구현을 통하여 실현가능성을 확인하였다.
본 연구의 목적은 운동량방정식에서 이송가속도항을 제외한 지배방정식을 이용하여 정형 사각 격자 기반의 2차원 지표면 침수해석 모형을 개발하는 것이다. 공간적 이산화는 유한체적법을 이용하였으며, 시간적 이산화는 음해법을 적용하였다. 모형의 실행시간을 단축하기 위해서 CPU를 이용한 병렬계산 기법을 적용하였다. 개발된 모형의 검증을 위해서 해석해와 비교하고, 가상 도메인에서 수치실험을 통해 모형의 거동을 평가하였다. 또한 국내의 장호원 지역과 모로코의 Sebou 강 지역에 대해서 각기 다른 공간해상도로 침수해석을 수행하고, 그 결과를 CAESER-LISFLOOD (CLF) 모형을 이용한 해석 결과와 비교하였다. 모형의 검증 결과 해석해와 잘 일치된 모의 결과를 나타내었고, 가상 도메인에서의 흐름 해석도 타당한 것으로 평가되었다. 장호원 지역과 Sebou 강 지역에 대한 본 연구와 CLF 모형의 침수모의 결과는 침수심과 침수범위에서 서로 유사하게 나타났으며, 장호원 지역의 경우 홍수위험지도의 침수범위와도 유사한 값을 보였다. 본 연구와 CLF 모형의 모의결과에서 상이한 부분에 대해서는 각각의 모의결과를 비교 평가하였다. 연구결과 본 연구에서 제시된 모형은 홍수터에서의 침수 양상을 잘 모의할 수 있는 것으로 평가되었다. 그러나 본 연구에서 제시된 모형을 이용하여 침수해석을 할 경우에는 도메인 구성 방법과 지배방정식 및 해석 방법에 의한 모형의 특징과 한계점을 충분히 고려해야 할 것이다.
본 연구의 목적은 엔지니어링 노임단가의 산출기준 개선방안을 마련하고 이를 모델화하여 적정한 노임단가 수준을 산정하는데 있다. 이를 위해 엔지니어링 노임단가 산출기준의 타당성 검토와 더불어 광범위한 엔지니어링 산업 실태조사가 실시되었다. 실태조사는 5,879개 모집단을 층화하여 추출된 표본 1,000개의 기업을 대상으로 실시되었고 이중 유효하게 응답한 748개 기업의 설문지가 분석에 사용되었다. 본 연구가 제시한 엔지니어링 노임단가 산출기준의 개선방안 및 산출모델은 다음과 같다. ① 엔지니어링 대가 산정 시 적용되는 노임단가는 평균임금이 아닌 원청 임금으로 산정하는 것이 합리적인 것으로 분석되었다. 원청노임단가는 '평균 기술자임금÷ [1-하청금액 수주비중×(1-하도급률)]'의 산식에 의해 추정되었다. ② 실태조사결과 엔지니어링산업의 1개월 근로일수는 99 % 신뢰구간에서 20.35일~20.54일로 현행기준(22일)과 차이가 컸다. 또한 노임단가 산출기준 법령을 검토한 결과 2022년 이후부터는 현행 22일에서 근로기준법에서 정한 휴일을 계산하여 근로일수를 산정하는 것이 법령에 부합되는 것으로 나타났다. ③ 엔지니어링 대가 산정 시 임금조사와 노임단가 적용시점 간의 시간차이는 정부지침을 준용할 경우 과거 특정기간 노임단가 상승률로 보정하여 사용할 수 있는 것으로 검토되었다. ④ 분석결과 현행 엔지니어링 노임단가는 하도급 거래구조의 미 반영(4.1 %), 근로일수의 과다 계상(6.8 %~7.8 %), 과거의 임금적용(2.6 %)으로 적정 노임단가보다 13.5~14.5 % 낮았다. 본 연구에서 제시된 모델은 적정한 엔지니어링 대가를 산정할 수 있을 뿐만 아니라 유사 분야의 노임단가 산정 시 유용한 틀로 사용될 수 있어 정책 활용도가 높을 것으로 기대된다.
공간 샘플링은 공간모델링 연구에 활용되어 샘플링 비용을 줄이면서 모델링의 효율성을 높이는 역할을 한다. 농업분야에서는 기후변화 영향을 예측하고 평가하기 위한 고해상도 공간자료 기반 모델링에 대한 연구 수요가 빠르게 증가하고 있으며, 이에 따라 공간 샘플링의 필요성과 중요성이 증가하고 있다. 본 연구는 국내 농지 공간샘플링 연구를 통해 농업분야 기후변화연구의 공간자료 활용의 효율성을 제고하고자 하였다. 본 연구는 층화랜덤샘플링을 기반으로 하였으며, 1 km 해상도의 농지 공간격자자료 모집단(11,386개 격자)에 대해서 RCP 시나리오별(RCP 4.5/8.5) 연대별(2030/2050/2080년대) 공간샘플링을 설계하였다. 국내 농지는 기상 및 토양 특성에 따라 계층화 되었으며, 샘플링 효율 극대화를 위해 최적 층화 및 샘플 배정 최적화를 수행하였다. 최적화는 작물수량, 온실가스 배출량, 해충 분포 확률을 포함하는 16개 목표 변수에 대해 주어진 정밀도 제한 내에서 샘플 수를 최소화하는 방향으로 진행되었다. 샘플링의 정밀도와 정확도 평가는 각각 변동계수(CV)와 상대적 편향을 기반으로 하였다. 국내 농지 공간격자 모집단 계층화 및 샘플 배정 및 샘플 수 최적화 결과, 전체 농지는 5~21개 계층, 46~69개 샘플 수 수준에서 최적화되었다. 본 연구결과물들은 국내 농업시스템 대표 공간격자로써 널리 활용될 수 있을 것으로 기대된다. 또한, 기후변화 영향예측 공간모델링 연구들에 활용되어 샘플링 비용 및 계산 시간을 줄이면서도 모델의 효율성을 높이는 데에 기여할 수 있다.
Convolutional Neural Network (ConvNet)은 시각적 특징의 계층 구조를 분석하고 학습할 수 있는 대표적인 심층 신경망이다. 첫 번째 신경망 모델인 Neocognitron은 80 년대에 처음 소개되었다. 당시 신경망은 대규모 데이터 집합과 계산 능력이 부족하여 학계와 산업계에서 널리 사용되지 않았다. 그러나 2012년 Krizhevsky는 ImageNet ILSVRC (Large Scale Visual Recognition Challenge) 에서 심층 신경망을 사용하여 시각적 인식 문제를 획기적으로 해결하였고 그로 인해 신경망에 대한 사람들의 관심을 다시 불러 일으켰다. 이미지넷 첼린지에서 제공하는 다양한 이미지 데이터와 병렬 컴퓨팅 하드웨어 (GPU)의 발전이 Krizhevsky의 승리의 주요 요인이었다. 그러므로 최근의 딥 컨볼루션 신경망의 성공을 병렬계산을 위한 GPU의 출현과 더불어 ImageNet과 같은 대규모 이미지 데이터의 가용성으로 정의 할 수 있다. 그러나 이러한 요소는 많은 도메인에서 병목 현상이 될 수 있다. 대부분의 도메인에서 ConvNet을 교육하기 위해 대규모 데이터를 수집하려면 많은 노력이 필요하다. 대규모 데이터를 보유하고 있어도 처음부터 ConvNet을 교육하려면 많은 자원과 시간이 소요된다. 이와 같은 문제점은 전이 학습을 사용하면 해결할 수 있다. 전이 학습은 지식을 원본 도메인에서 새 도메인으로 전이하는 방법이다. 전이학습에는 주요한 두 가지 케이스가 있다. 첫 번째는 고정된 특징점 추출기로서의 ConvNet이고, 두번째는 새 데이터에서 ConvNet을 fine-tuning 하는 것이다. 첫 번째 경우, 사전 훈련 된 ConvNet (예: ImageNet)을 사용하여 ConvNet을 통해 이미지의 피드포워드 활성화를 계산하고 특정 레이어에서 활성화 특징점을 추출한다. 두 번째 경우에는 새 데이터에서 ConvNet 분류기를 교체하고 재교육을 한 후에 사전 훈련된 네트워크의 가중치를 백프로퍼게이션으로 fine-tuning 한다. 이 논문에서는 고정된 특징점 추출기를 여러 개의 ConvNet 레이어를 사용하는 것에 중점을 두었다. 그러나 여러 ConvNet 레이어에서 직접 추출된 차원적 복잡성을 가진 특징점을 적용하는 것은 여전히 어려운 문제이다. 우리는 여러 ConvNet 레이어에서 추출한 특징점이 이미지의 다른 특성을 처리한다는 것을 발견했다. 즉, 여러 ConvNet 레이어의 최적의 조합을 찾으면 더 나은 특징점을 얻을 수 있다. 위의 발견을 토대로 이 논문에서는 단일 ConvNet 계층의 특징점 대신에 전이 학습을 위해 여러 ConvNet 계층의 특징점을 사용하도록 제안한다. 본 논문에서 제안하는 방법은 크게 세단계로 이루어져 있다. 먼저 이미지 데이터셋의 이미지를 ConvNet의 입력으로 넣으면 해당 이미지가 사전 훈련된 AlexNet으로 피드포워드 되고 3개의 fully-connected 레이어의 활성화 틀징점이 추출된다. 둘째, 3개의 ConvNet 레이어의 활성화 특징점을 연결하여 여러 개의 ConvNet 레이어의 특징점을 얻는다. 레이어의 활성화 특징점을 연결을 하는 이유는 더 많은 이미지 정보를 얻기 위해서이다. 동일한 이미지를 사용한 3개의 fully-connected 레이어의 특징점이 연결되면 결과 이미지의 특징점의 차원은 4096 + 4096 + 1000이 된다. 그러나 여러 ConvNet 레이어에서 추출 된 특징점은 동일한 ConvNet에서 추출되므로 특징점이 중복되거나 노이즈를 갖는다. 따라서 세 번째 단계로 PCA (Principal Component Analysis)를 사용하여 교육 단계 전에 주요 특징점을 선택한다. 뚜렷한 특징이 얻어지면, 분류기는 이미지를 보다 정확하게 분류 할 수 있고, 전이 학습의 성능을 향상시킬 수 있다. 제안된 방법을 평가하기 위해 특징점 선택 및 차원축소를 위해 PCA를 사용하여 여러 ConvNet 레이어의 특징점과 단일 ConvNet 레이어의 특징점을 비교하고 3개의 표준 데이터 (Caltech-256, VOC07 및 SUN397)로 실험을 수행했다. 실험결과 제안된 방법은 Caltech-256 데이터의 FC7 레이어로 73.9 %의 정확도를 얻었을 때와 비교하여 75.6 %의 정확도를 보였고 VOC07 데이터의 FC8 레이어로 얻은 69.2 %의 정확도와 비교하여 73.1 %의 정확도를 보였으며 SUN397 데이터의 FC7 레이어로 48.7%의 정확도를 얻었을 때와 비교하여 52.2%의 정확도를 보였다. 본 논문에 제안된 방법은 Caltech-256, VOC07 및 SUN397 데이터에서 각각 기존에 제안된 방법과 비교하여 2.8 %, 2.1 % 및 3.1 %의 성능 향상을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.