• Title/Summary/Keyword: Computation process

Search Result 1,102, Processing Time 0.029 seconds

An Algorithm on Improving a Pitch Searching by Energy Compensation in a Frame for Vocoder (보코더에서 프레임별 에너지 보상에 의한 피치검색 성능 개선에 관한 연구)

  • Baek, Geum-Ran;Min, So-Yeon;Bae, Myung-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.3188-3193
    • /
    • 2012
  • It is important to search a pitch for vocoder. The major drawback to vocoders is their large computational requirements in searching a pitch and a codebook. In this paper, a simple method is proposed to improve the pitch searching process in the pitch filter almost without degradation of quality. The period of speech signal is emphasized by using Dual Pulse technique, the same type of autocorrelation method, in pitch search. Sometimes the incorrect pitch can be obtained by halving, doubling and trifling, To solve it, before searching a pitch, we estimate energy rate in a frame and compensate envelop of signal with it. By using the proposed algorithm in pitch search, its required computation are reduced and searching pitch is improved.

Identification of progressive collapse pushover based on a kinetic energy criterion

  • Menchel, K.;Massart, T.J.;Bouillard, Ph.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.3
    • /
    • pp.427-447
    • /
    • 2011
  • The progressive collapse phenomenon is generally regarded as dynamic. Due to the impracticality of nonlinear dynamic computations for practitioners, an interest arises for the development of equivalent static pushover procedures. The present paper proposes a methodology to identify such a procedure for sudden column removals, using energetic evaluations to determine the pushover loads to apply. In a dynamic context, equality between the cumulated external and internal works indicates a vanishing kinetic energy. If such a state is reached, the structure is sometimes assumed able to withstand the column removal. Approximations of these works can be estimated using a static computation, leading to an estimate of the displacements at the zero kinetic energy configuration. In comparison with other available procedures based on such criteria, the present contribution identifies loading patterns to associate with the zero-kinetic energy criterion to avoid a single-degree-of-freedom idealisation. A parametric study over a family of regular steel structures of varying sizes uses non-linear dynamic computations to assess the proposed pushover loading pattern for the cases of central and lateral ground floor column failure. The identified quasi-static loading schemes are shown to allow detecting nearly all dynamically detected plastic hinges, so that the various beams are provided with sufficient resistance during the design process. A proper accuracy is obtained for the plastic rotations of the most plastified hinges almost independently of the design parameters (loads, geometry, robustness), indicating that the methodology could be extended to provide estimates of the required ductility for the beams, columns, and beam-column connections.

Ground State Computation of Interacting Fermion Systems by using Advanced Stochastic Diagonalization (진보된 혼돈 대각화 방법을 이용한 상호작용하는 페르미온 계의 기저상태 계산)

  • Ahn, Sul-Ah;Cho, Myoung Won
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.209-211
    • /
    • 2007
  • The computational time of Stocahstic Diagonalization (SD) calculation for 2-dimensional interacting fermion systems is reduced by using several methods including symmetry operations. First, each lattice is subdivided into spin-up and spin-down lattices separately, thus allowing a bi-partite lattice. A valid basis state is then obtained from stacking up an up-spin configuration on top of a down-spin configuration. As a consequence, the memory space to be used in saving the trial basis state reduces significantly. Secondly, the matrix elements of a Hamiltonianin are reconrded in a look-up table when making basis state set. Thus the repeated calculation of the matrix elements of the Hamiltonian are avoided during SD process. Thirdly, by applying symmetry operations to the basis state set the original basis state is transformed to a new basis state whose elements are the eigenvectors of the symmetry operations. The ground state wavefunction is constructed from the elements of symmetric - bonding state - basis state set. As a result, the total number of basis states involved in SD calculation is reduced upto 50 percentage by using symmetry operations.

  • PDF

Signal Energy-based Cyclostationary Spectrum Sensing for Wireless Sensor Networks (무선센서네트워크를 위한 신호 에너지 기반 사이클로스테이셔너리 스펙트럼 검출)

  • Nguyen, Quoc Kien;Jeon, Taehyun
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.119-122
    • /
    • 2016
  • Feature detection is recognized as an accurate spectrum sensing approach when the information of the desired signal is partly known at the receiver. This type of detection was proposed to overcome large noise environment. Cyclostationary detection is an example of feature detection in spectrum sensing technique in cognitive radio. However, the cyclostationary process calculation requires a lot of processing time and information about the designed signals. On the other hand, energy detection spectrum sensing is widely known as a simple and compact spectrum sensing technique. However, energy detection is highly affected by large noise and lead to high detection error probability. In this paper, the combination of energy detection and cyclostationary is proposed in order to increase the accuracy and decrease the calculation and processing time. The two-layer threshold is utilized in order to reduce the complexity of computation and processing time in cyclostationary which can lead to the improved throughput of the system. The simulation result shows that the implementation of energy-based cyclostationary detector can help to improve the performance of the system while it can considerably reduce the required time for signal detection.

Nonrigid Lung Registration between End-Exhale and End-Inhale CT Scans Using a Demon Algorithm (데몬 알고리즘을 이용한 호기-흡기 CT 영상 비강체 폐 정합)

  • Yim, Ye-Ny;Hong, Helen;Shin, Yeong-Gil
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.1
    • /
    • pp.9-18
    • /
    • 2010
  • This paper proposes a deformable registration method using a demon algorithm for aligning the lungs between end-exhale and end-inhale CT scans. The lungs are globally aligned by affine transformation and locally deformed by a demon algorithm. The use of floating gradient force allows a fast convergence in the lung regions with a weak gradient of the reference image. The active-cell-based demon algorithm helps to accelerate the registration process and reduce the probability of deformation folding because it avoids unnecessary computation of the displacement for well-matched lung regions. The performance of the proposed method was evaluated through comparisons of methods that use a reference gradient force or a combined gradient force as well as methods with and without active cells. The results show that the proposed method can accurately register lungs with large deformations and can reduce the processing time considerably.

A Refinement Strategy for Spatial Selection Queries with Arbitrary-Shaped Query Window (임의의 다각형 질의 윈도우를 이용한 공간 선택 질의의 정제 전략)

  • 유준범;최용진;정진완
    • Journal of KIISE:Databases
    • /
    • v.30 no.3
    • /
    • pp.286-295
    • /
    • 2003
  • The shape of query windows for spatial selection queries is a rectangle in many cases. However, it can be issued for spatial selection queries with not only rectangular query widow, but also polygonal query window. Moreover, as the applications like GIS can manage much more spatial data, they can support the more various applications. Therefore it is valuable for considering about the query processing method suitable for not only rectangle query window, but also general polygonal one. It is the general state-of-the-art approach to use the plane- sweep technique as the computation algorithm in the refinement step as the spatial join queries do. However, from the observation on the characteristics of spatial data and query windows, we can find in many cases that the shape of query window is much simpler than that of spatial data. From these observations, we suggest a new refinement process approach which is suitable for this situation. Our experiments show that, if the number of vertices composing the query window is less than about 20, the new approach we suggest is superior to the state-of-the-art approach by about 20% in general cases.

A Video Abstraction Algorithm Reflecting Various Users Requirement (사용자의 요구를 반영하는 동영상 요약 알고리즘)

  • 정진국;홍승욱;낭종호;하명환;정병희;김경수
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.7_8
    • /
    • pp.599-609
    • /
    • 2003
  • Video abstraction is a process to pick up some important shots on a video, while the important shots might vary on the persons subjectivity. Previous works on video abstraction use only one low level feature to choose an important shot. This thesis proposes an abstraction scheme that selects a set of shots which simultaneously satisfies the desired features(or objective functions) of a good abstraction. Since the complexity of the computation to find a set of shots which maximizes the sum of object function values is $0({2^n})$, the proposed .scheme uses a simulated annealing based searching method to find the suboptimal value within a short period of time. Upon the experimental results on various videos, we could argue that the proposed abstraction scheme could produce a reasonable video abstraction. The proposed abstraction scheme used to build a digital video library.

Automatic Pose similarity Computation of Motion Capture Data Through Topological Analysis (위상분석을 통한 모션캡처 데이터의 자동 포즈 비교 방법)

  • Sung, Mankyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1199-1206
    • /
    • 2015
  • This paper introduces an algorithm for computing similarity between two poses in the motion capture data with different scale of skeleton, different number of joints and different joint names. The proposed algorithm first performs the topological analysis on the skeleton hierarchy for classifying the joints into more meaningful groups. The global joints positions of each joint group then are aggregated into a point cloud. The number of joints and their positions are automatically adjusted in this process. Once we have two point clouds, the algorithm finds an optimal 2D transform matrix that transforms one point cloud to the other as closely as possible. Then, the similarity can be obtained by summing up all distance values between two points clouds after applying the 2D transform matrix. After some experiment, we found that the proposed algorithm is able to compute the similarity between two poses regardless of their scale, joint name and the number of joints.

Automatic Face Extraction with Unification of Brightness Distribution in Candidate Region and Triangle Structure among Facial Features (후보영역의 밝기 분산과 얼굴특징의 삼각형 배치구조를 결합한 얼굴의 자동 검출)

  • 이칠우;최정주
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.1
    • /
    • pp.23-33
    • /
    • 2000
  • In this paper, we describe an algorithm which can extract human faces with natural pose from complex backgrounds. This method basically adopts the concept that facial region has the nearly same gray level for all pixels within appropriately scaled blocks. Based on the idea, we develop a hierarchial process that first, a block image data with pyramid structure of input image is generated, and some candidate regions for facial regions in the block image are Quickly determined, then finally the detailed facial features; organs are decided. To find the features easily, we introduce a local gray level transform which emphasizes dark and small regions, and estimate the geometrical triangle constraints among the facial features. The merit of our method is that we can be freed from the parameter assignment problem since the algorithm utilize a simple brightness computation, consequently robust systems not being depended on specific parameter values can be easily constructed.

  • PDF

Visual Information Selection Mechanism Based on Human Visual Attention (인간의 주의시각에 기반한 시각정보 선택 방법)

  • Cheoi, Kyung-Joo;Park, Min-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.3
    • /
    • pp.378-391
    • /
    • 2011
  • In this paper, we suggest a novel method of selecting visual information based on bottom-up visual attention of human. We propose a new model that improve accuracy of detecting attention region by using depth information in addition to low-level spatial features such as color, lightness, orientation, form and temporal feature such as motion. Motion is important cue when we derive temporal saliency. But noise obtained during the input and computation process deteriorates accuracy of temporal saliency Our system exploited the result of psychological studies in order to remove the noise from motion information. Although typical systems get problems in determining the saliency if several salient regions are partially occluded and/or have almost equal saliency, our system is able to separate the regions with high accuracy. Spatiotemporally separated prominent regions in the first stage are prioritized using depth value one by one in the second stage. Experiment result shows that our system can describe the salient regions with higher accuracy than the previous approaches do.