• Title/Summary/Keyword: Computation fluid dynamics (CFD)

Search Result 79, Processing Time 0.023 seconds

A Study on Waste Heat Recycling of Plasma Melting System (플라즈마 용융 공정시의 폐열 재활용 연구)

  • Kim, Seong-Jung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.3
    • /
    • pp.85-90
    • /
    • 2006
  • The purpose of this research is to design an imitation boiler similar to the waste heat boiler installed on a plasma melting furnace in order to acquire a capability of a thermal design as to the circulation of heat and the discharge of noxious gas inside a boiler and to improve the efficiency of a waste heat boiler using the CFD (Computation Fluid Dynamics) program. The position of corrosion and the generation of a clinker inside a boiler due to temperature changes, combustion gas flows, and corrosive gases inside a boiler are examined to design the structure of an efficient boiler and recycle energy. As a result of this research, the boiler installed on a plasma melting furnace met the conditions of design by cooling the combustion gases discharged after the second combustion from an exhaust port, originally at 1,200 degrees Celsius, down to around 450 degrees Celsius. On the other hand, the circulation of corrosive gases (SOx and HCL) may lead to the generation of corrosion or a clinker in the upper and lower parts of an exhaust port more easily than any other parts of a boiler. Accordingly, the corrosion on the inside and outside walls of a boiler may result in a shortened lifespan of a boiler and an inability to recycle waste heat in an efficient manner. A prevention against corrosion at high and low temperatures needs to be considered in detail.

  • PDF

Investigation of Turbulent Analysis Methods for CFD of Gas Dispersion Around a Building (건물주위의 가스 확산사고에 대한 CFD 난류 해석기법 검토)

  • Ko, Min Wook;Oh, Chang Bo;Han, Youn Shik;Do, Kyu Hyung
    • Fire Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.42-50
    • /
    • 2015
  • Three simulation approaches for turbulence were applied for the computation of propane dispersion in a simplified real-scale urban area with one building:, Large Eddy Simulation (LES), Detached Eddy Simulation (DES), and Unsteady Reynolds Averaged Navier-Stokes (RANS). The computations were performed using FLUENT 14, and the grid system was made with ICEM-CFD. The propane distribution depended on the prediction performance of the three simulation approaches for the eddy structure around the building. LES and DES showed relatively similar results for the eddy structure and propane distribution, while the RANS prediction of the propane distribution was unrealistic. RANS was found to be inappropriate for computation of the gas dispersion process due to poor prediction performance for the unsteady turbulence. Considering the computational results and cost, DES is believed to be the optimal choice for computation of the gas dispersion in a real-scale space.

Effect on Flow Distortion of S-Duct by Boundary Layer Suction (경계층 흡입이 S-Duct의 유동 왜곡에 미치는 영향성 연구)

  • Baeg, Seungyong;Lee, Jihyeong;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.17-25
    • /
    • 2019
  • An intake of Aircraft becomes S-shaped geometry due to spatial limitation or procuring survivability. But curvature of the S-shaped geometry makes secondary flow or flow separation which is the cause of non-uniform pressure distribution. In this study, boundary layer suction is applied to RAE M 2129 S-Duct by attaching sub duct. Design variable is suction location and angle. A mass flow rate drawn out by suction at the sub duct outlet is constant over every model. A grid dependency test was conducted to verify validity of computation. The comparison among the CFD (Computation Fluid Dynamics), ARA experimental result, and ARA computation result of non-dimensional pressure distribution on the Port side and Starboard Side confirmed the validity of CFD. In this study, Distortion Coefficient was used for evaluating aerodynamic performance of S-Duct. The analysis, which was about flow separation, vortex, mass flow rate distribution, and pressure distribution were also investigated. Maximum 26.14% reduction in Distortion Coefficient was verified.

Parameter Study of Boiling Model for CFD Simulation of Multiphase-Thermal Flow in a Pipe

  • Chung, Soh-Myung;Seo, Yong-Seok;Jeon, Gyu-Mok;Kim, Jae-Won;Park, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.50-58
    • /
    • 2021
  • The demand for eco-friendly energy is expected to increase due to the recently strengthened environmental regulations. In particular, the flow inside the pipe used in a cargo handling system (CHS) or fuel gas supply system (FGSS) of hydrogen transport ships and hydrogen-powered ships exhibits a very complex pattern of multiphase-thermal flow, including the boiling phenomenon and high accuracy analysis is required concerning safety. In this study, a feasibility study applying the boiling model was conducted to analyze the multiphase-thermal flow in the pipe considering the phase change. Two types of boiling models were employed and compared to implement the subcooled boiling phenomenon in nucleate boiling numerically. One was the "Rohsenow boiling model", which is the most commonly used one among the VOF (Volume-of-Fluid) boiling models under the Eulerian-Eulerian framework. The other was the "wall boiling model", which is suitable for nucleate boiling among the Eulerian multiphase models. Moreover, a comparative study was conducted by combining the nucleate site density and bubble departure diameter model that could influence the accuracy of the wall boiling model. A comparison of the Rohsenow boiling and the wall boiling models showed that the wall boiling model relatively well represented the process of bubble formation and development, even though more computation time was consumed. Among the combination of models used in the wall boiling model, the simulation results were affected significantly by the bubble departure diameter model, which had a very close relationship with the grid size. The present results are expected to provide useful information for identifying the characteristics of various parameters of the boiling model used in CFD simulations of multiphase-thermalflow, including phase change and selecting the appropriate parameters.

An optimum design study of interlacing nozzle by using Computational Fluid Dynamics

  • Juraeva Makhsuda;Ryu Kyung-Jin;Kim Sang-Dug;Song Dong-Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.395-397
    • /
    • 2006
  • Air interlacing serves to protect the yarn against damage, strengthens inter-filament compactness or cohesion, and ensures fabric consistency. The air interlacing nozzle is used to introduce intermittent nips to a filament yarn so as to improve its performance in textile processing. The effect of various interlacing nozzle geometries on the interlacing process was studied. The geometries of interlacing nozzles with single or multiple air inlets located across the width of yarn channels are investigated. The basis case is the yarn channel, with a perpendicular main air inlet in the middle. Other cases have main air inlets, slightly inclined double sub air inlets, The yarn channel cross sectional shapes are either semicircular or rectangular shapes. The compressed impinging jet from the main air inlet hole hits the opposing bottom wall of the yarn channel, is divided into two branches, joins with the compressed air coming out from sub air inlet at the bottom and creates two free jets at both ends of the yarn channel. The compressed air movement in the cross-section consists of two opposing directional vortices. The CFD-FASTRAN flow parallel solver was used to perform steady simulations of impinging jet flow inside of the interlace nozzles. The vortical structure and the flow pattern such as pressure contour, particle traces, velocity vector plots inside of interlace nozzle geometry are discussed in this pater.

  • PDF

Concept Design of Ludwieg Tube at Konkuk University (건국대학교 Ludwieg Tube 개념 설계에 관한 연구)

  • Kim, Young Ju;Byun, Yung Hwan;Park, Soo Hyung;Park, Gisu;Lee, Jongkook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.9
    • /
    • pp.703-711
    • /
    • 2018
  • A preliminary design tool of a hypersonic Ludwieg tube facility which simulates real-flight environment was developed and its performance was verified by CFD(Computation Fluid Dynamics) calculations. The operating theory of Ludwieg tube was studied to develop the preliminary design tool. Using the preliminary design tool, Ludwieg tube specifications were determined to satisfy target performance. The Ludwieg tube which produces high speed flows(the Mach number ranging 4 to 10) was designed. Especially altitude simulation at Mach 4 flow could be performed.

Optimal design method of bulbous bow for fishing vessels

  • Tran, Thai Gia;Van Huynh, Chinh;Kim, Hyun Cheol
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.858-876
    • /
    • 2021
  • Although widely used, the design of the bulbous bow for ships has been difficult due to the complex interference between the wave system generated by the bulb and the wave system of the ship hull. Until now, a bulbous bow has been often designed using Kracht charts, which were established based on model test data, but these charts apply only to ships with a block coefficient CB = 0.56-0.82, Froude number Fn = 0.20-0.40, and the obtained bulb sizes are only close to optimal. This paper presents a new method for the optimal design of bulbous bow, starting from the design of an initial bulb using Kracht charts for ships with any block coefficient or Froude number, then resizing this initial bulb to define the optimal bulb sizes based on a multi-objective function of the required power reduction, and a combined solution of Computation Fluid Dynamics (CFD) analysis and surrogate models. This study was applied to a fishing vessel FAO 75, which has been model tested and used to design steel fishing vessels in Vietnam recently. The obtained quantitative results showed the same trend as the theory and practice, with a reduction of the ship's required power by about 14%.

THREE-DIMENSIONAL FLOW COMPUTATION AND PERFORMANCE CHARACTERISTICS ANALYSIS OF PROPELLERS FOR WATER TREATMENT MIXER (수처리 교반기용 프로펠러의 3차원 유동 전산 해석 및 성능 특성 분석)

  • Bae, Y.G.;Kim, D.H.;Hwang, S.T.;Moon, Y.J.
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.10-15
    • /
    • 2015
  • In this study, the characteristics of water treatment mixer with various propeller profiles are numerically invesitgated. The computation was conducted by solving the incompressible Navier-Stokes equations on unstructured tetrahedral elements with k-${\varepsilon}$ turbulence model. It was found that the spreading angle and swirl magnitude of the jet are important factors for the mixer efficiency, since they clearly characterize the propeller and the frontal surface area of the propeller but not so much affected by the skew angle if it exceeds 30 degrees. The case1 and case2 models are found to show the best propeller efficiency. The case2 with low blade angle, however, requires the lowest power input for the same discharge capacity as the case1.

Development of Rotor for Internal Gear Pump using Cycloid and Polycircular-arc Curves (사이클로이드 및 폴리서클 곡선을 이용한 내접형 기어펌프용 치형 개발)

  • Kim, Min-Soo;Lee, Hyun-Woo;Jung, Sung-Yuen;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.9
    • /
    • pp.1003-1011
    • /
    • 2012
  • A new type of gerotor developed in this paper has the inner rotor designed by inserting a polycircular-arc between the hypocycloid and epicycloid curves, and we also suggest that the outer rotor be designed using the closed-form equation for the inner rotor and a method of modification. Thus, it is possible to design a gerotor for which there is no cusp and loop, as in this case undercut is prevented. We developed automated program for rotor design and calculation of the flow rate and flow rate irregularity. And we also demonstrate the superior performance of the gerotor developed in this study by analyzing the internal fluid flow using a commercial computation fluid dynamics-code (CFD).

Optimal fin planting of splayed multiple cross-sectional pin fin heat sinks using a strength pareto evolutionary algorithm 2

  • Ramphueiphad, Sanchai;Bureerat, Sujin
    • Advances in Computational Design
    • /
    • v.6 no.1
    • /
    • pp.31-42
    • /
    • 2021
  • This research aims to demonstrate the optimal geometrical design of splayed multiple cross-sectional pin fin heat sinks (SMCSPFHS), which are a type of side-inlet-side-outlet heat sink (SISOHS). The optimiser strength Pareto evolutionary algorithm2 (SPEA2)is employed to explore a set of Pareto optimalsolutions. Objective functions are the fan pumping power and junction temperature. Function evaluations can be accomplished using computational fluid dynamics(CFD) analysis. Design variablesinclude pin cross-sectional areas, the number of fins, fin pitch, thickness of heatsink base, inlet air speed, fin heights, and fin orientations with respect to the base. Design constraints are defined in such a way as to make a heat sink usable and easy to manufacture. The optimum results obtained from SPEA2 are compared with the straight pin fin design results obtained from hybrid population-based incremental learning and differential evolution (PBIL-DE), SPEA2, and an unrestricted population size evolutionary multiobjective optimisation algorithm (UPSEMOA). The results indicate that the splayed pin-fin design using SPEA2 issuperiorto those reported in the literature.