• Title/Summary/Keyword: Computation Workload Estimation

Search Result 3, Processing Time 0.013 seconds

Parallel Rendering of High Quality Animation based on a Dynamic Workload Allocation Scheme (작업영역의 동적 할당을 통한 고화질 애니메이션의 병렬 렌더링)

  • Rhee, Yun-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.1
    • /
    • pp.109-116
    • /
    • 2008
  • Even though many studies on parallel rendering based on PC clusters have been done. most of those did not cope with non-uniform scenes, where locations of 3D models are biased. In this work. we have built a PC cluster system with POV-Ray, a free rendering software on the public domain, and developed an adaptive load balancing scheme to optimize the parallel efficiency Especially, we noticed that a frame of 3D animation are closely coherent with adjacent frames. and thus we could estimate distribution of computation amount, based on the computation time of previous frame. The experimental results with 2 real animation data show that the proposed scheme reduces by 40% of execution time compared to the simple static partitioning scheme.

  • PDF

Motion Estimation Algorithm to Guarantee Hard Realtime Operation (경성 실시간 동작을 보장하는 움직임 추정 알고리즘)

  • Yang, Hyeon-Cheol;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.17 no.1
    • /
    • pp.36-43
    • /
    • 2013
  • This paper proposes a motion estimation algorithm with run-time adaptive workload control. It has optimized performance within limited hardware resources while guaranteeing hard realtime operation. It performs maximum searches within hard realtime constraints, since it determines search steps and workload adaptively. It reduces the hardware size to 1/4~1/400 of conventional algorithms, while its PSNR degradation is only 0.02~0.44 dB. It can be easily applied to most conventional fast algorithms, so it is useful to design realtime encoder chips.

Wing weight estimation considering constraints of structural strength and stiffness in aircraft conceptual design

  • Bai, Chen;Mingqiang, Luo;Zhong, Shen;Zhe, Wu;Yiming, Man;Lei, Fang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.4
    • /
    • pp.383-395
    • /
    • 2014
  • According to the requirement of wing weight estimation and frequent adjustments during aircraft conceptual design, a wing weight estimation method considering the constraints of structural strength and stiffness is proposed to help designers make wing weight estimations rapidly and accurately. This method implements weight predictions on the basis of structure weight optimization with stiffness constraints and strength constraints, which include achievement of wing shape parametric modeling, rapid structure layout, finite element (FE) model automated generation, load calculation, structure analysis, weight optimization, and weight computed based on modeling. A software tool is developed with this wing weight estimation method. This software can realize the whole process of wing weight estimation with the method and the workload of wing weight estimation is reduced because much of the work can be completed by the software. Finally, an example is given to illustrate that this weight estimation method is effective.