• Title/Summary/Keyword: Compulsory replacement

Search Result 5, Processing Time 0.015 seconds

Prediction Equation of Compulsory Replacement Depth of Silty Layer in Sihwa Region (시화지역 실트질 지반에서 강제치환심도 예측식 산정)

  • Park, Young;Lim, Heui-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.9
    • /
    • pp.55-66
    • /
    • 2011
  • The compulsory replacement method for soft ground treatment is simple but excellent in economic feasibility. However, the accurate replacement depth is not easy to properly predicted since an theoretical algorithm has not presently been established so far. In this research a prediction equation is proposed in a new form based on the liquid limit and natural moisture content rather than on the bearing capacity of the soft soil layer. The equation is based on the monitoring as well as the confirmatory boring at the site. In addition, the equation has been derived from the data obtained from the analysis of the characteristics of silt/clay of Sihwa region. The final prediction equation has been drawn by applying the regression analysis method.

Stability of embankment above Compulsory Replacement layer (강제치환 상부 성토제체의 안정성에 관한 연구)

  • 신현영;김병일;정승용;김수삼
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.392-398
    • /
    • 2000
  • When soft ground improvement is proceeded in costal area using compulsory replacement method, it is very important that the method of stability of embankment above replacement layer can be obtained if non-replaced soft layer is remained, and there are a lot of influence factors which affect the stability of embankment, such as replacement depth, the water content of dredged soil and the width of replacement layer, etc. If soft layer was replaced completely by good quality materials, there would be no problems about stability of embankment, but practically non-replaced layer would be remained as the strength of soft layer will be increased. So another consideration is required to get the stability of embankment. In this study, stability of embankment among these factors was compared, and from that results, the better way that could obtain the stability was presented.

  • PDF

Prediction of Compulsory Replacement Depth by Empirical Method (경험적인 방법에 의한 강제치환 심도 예측)

  • Hong Won-Pyo;Han Jung-Geun;Lee Jong-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.145-153
    • /
    • 2004
  • Based on the previous studies proposed by many researchers about the evaluation method of replacement depth, a modified formula which incorporates the effect factors such as embanked height and load, replacement depth, cohesive force of original ground and unit weight of embankment etc, was suggested in this study. The new proposed formula was applied in the three construction sites of Kwangyang-Bay Area (Yeocheon, Youlchon, and Kwangyang) constructed by the compulsion replacement method. The application of the new method was investigated through these case studies in domestics. A modified bearing capacity parameter was estimated form the relationship of modified embankment loading and ultimate bearing capacity resulted from the site investigation, and the replacement depth was predicted by using this parameter. In addition, through the relationship analyses between each effect factors to the replacement depth in two areas, Yeocheon and Youlchon, an empirical prediction method which can evaluate the replacement depth in adjoining area was proposed. The predicted value obtained by new method is approximately similar to the measured replacement depth in Kwangyang area.

Case Study of Improvement against Leakage of a Sea Dike under Construction (해안제방 시공 중 해수유입에 대한 차수보강 사례분석)

  • Han, Sang-Hyun;Yea, Geu-Guwen;Kim, Hong-Yeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.2
    • /
    • pp.95-103
    • /
    • 2015
  • In this study, the causes and countermeasures for the leakage of a sea dyke under construction are analyzed. In general, the seabed ground is clearly divided from the embankment but a lot of parts show abnormal zones with low resistivity from the results of electric resistivity survey. Hence the causes of the leakage are considered as following: three-dimensional shear strain behavior, irregular compulsory replacement of the soft seabed ground with low strength and quality deterioration of the waterproof sheets during the closing process. The improvement method is determined by considering the constructability in the seawater and its velocity condition, durability, economic feasibility, similar application cases and so on. Consequently, a combination of low slump mortar and slurry grouting and injection method is selected as an optimum combination. Mixing ratio and improvement pattern are determined after drilling investigation and pilot test. The improvement boundary is separated into general and intense leakage area. The construction is performed with each pattern and the improvement effects are confirmed. The confirmed effects with various tests after completion show tolerable ranges for all of the established standards. Finally, various issues such as prediction of length of the waterproof sheet, installation of it against seawater velocity, etc. should be considered when sea dykes are designed or executed around the western sea which has high tide difference.

Partial Drainage Characteristics of Clayey Silt with Low Plasticity from the West Coast (서해안 저소성 점토질 실트 지반의 부분배수 특성)

  • Kim, Seok-Jo;Lee, Sang-Duk;Kim, Ju-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.9
    • /
    • pp.17-27
    • /
    • 2016
  • Parial drainage characteristics of clayey silt with low plasticity from the west coast (Incheon and Hwaseong) was analyzed using CPTU based existing correlation equations and compulsory replacement method. Generally, the estimated $OCRs={\kappa}{\cdot}((q_t-{\sigma}_{vo})/{\sigma}^{\prime}_{vo})$ using Powell and Quartman(1988) were higher than those obtained by the oeodometer tests. These trends were noticeable for the layers containing a lot of silty and sand soils. The assessment of partial drainage conditions was performed through Schnaid et al. (2004)'s equation; it is based on plotting the normalized cone resistance, $Q_t$ versus the pore pressure parameter, $B_q$ in combination with the strength incremental ratio, $s_u/{\sigma}^{\prime}_{vo}$ to the CPTU data. It is evident that more than half of the data fall in the range where $B_q$ < 0.3, corresponding to the domain in which the partial drainage prevails when testing normally consolidated soils at a standard rate of penetration (2 cm/s). To estimate the replacement depth of clayey silt with low plasticity, back analysis was carried out to evaluate the internal friction angle based on where the design depths are equal to the checked depths using bearing capacity equation. The internal friction angels obtained from the back analysis tended to increase as the plasticity index decreases, which is ranged approximately from ${\varphi}^{\prime}=2^{\circ}$ to ${\varphi}^{\prime}=7^{\circ}$.