• Title/Summary/Keyword: Compressor speed control

Search Result 118, Processing Time 0.022 seconds

Design of PI and Feedforward Controller for Precise Temperature Control of Oil Cooler System (오일쿨러의 고정밀 온도 제어를 위한 PI 및 피드포워드 제어기 설계)

  • Byun, J.Y.;Jeong, S.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.89-95
    • /
    • 2010
  • This paper deals with design method of proportional-integral(PI) and feedforward controller for obtaining precise temperature and high energy efficiency of oil cooler system in machine tools. The compressor's speed and opening angle of an electronic expansion valve are controlled to keep reference value of temperature at oil outlet and superheat of an evaporator. Especially, the feedforward controller is added to suppress temperature fluctuation under abrupt disturbances. Through some experiments, the suggested method can control the target temperature within steady state error of ${\pm}0.l^{\circ}C$ and maximum overshoot $0.2^{\circ}C$ under abrupt disturbances.

A Fuel Spiking Test for the Surge Margin Measurement in Gas Turbine Engines

  • Lee, Jinkun;Kim, Chuntaek;Sooseok Yang;Lee, Daesung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.380-384
    • /
    • 2004
  • A fuel spiking test was performed to measure the surge margin of the compressor in a gas turbine engine. During the test, fuel spiking signal was superimposed on the engine controller demand and the mixed signals were used to control a fuel line servo-valve. For the superimposition, a subsystem composed of a fuel controller and a function generator was used. During the fuel spiking test, the original scheduled fuel signals and the modified signals were compared to guarantee the consistency excluding the spiking signals. The spiking signals were carefully selected to maintain the engine speed constant. The fuel spiking effects were checked by three dynamic pressure sensors. Sensors were placed before the servo-valve, after the servo-valve, and after the compressor location, respectively. The modulations of the spiking signal duration and fuel flow rate were examined to make the- operating point approach the surge region. The real engine test was performed at the Altitude Engine Test Facility (AETF) in Korea Aerospace Research Institute (KARI). In the real engine test, fuel spiking signals with 25~50 ㎳ of spiking signal time and 17~46 % of base fuel flow rate condition were used. The dithering signal was 5~6 ㎃ at 490 Hz. The test results showed good agreement between the fuel spiking signals and the fuel line pressure signals. Also, the compressor discharge pressure signals showed fuel spiking effects and the changes of the operating point on the compressor characteristic map could be traced.

  • PDF

Turbojet Engine Control of UAV using Artificial Neural Network PID (인공신경망 PID를 이용한 무인항공기 터보제트 엔진 제어)

  • Kim, Dae-Gi;Hong, Gyo-Young;Ahn, Dong-Man;Hong, Seung-Beom;Jie, Min-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.2
    • /
    • pp.107-113
    • /
    • 2014
  • In this paper, controller Propose to prevent compressor surge and improve the transient response of the fuel flow control system of turbojet engine. Turbojet engine controller is designed by applying Artificial Neural Network PID control algorithm and make an inference by applying Artificial Neural Network Error Back Propagation Algorithm. To prevent any surge or a flame out event during the engine acceleration or deceleration, the ANN PID controller effectively controls the fuel flow input of the control system. ANN PID results are used as the fuel flow control inputs to prevent compressor surge and flame-out for turbo-jet engine and the controller is designed to converge to the desired speed quickly and safely. Using MATLAB to perform computer simulations verified the performance of the proposed controller. Response characteristics pursuant to the gain were analyzed by simulation.

Development of a Screw Type Super-Charger for Part Load Control of Passenger Car (승용차의 부분부하제어를 위한 스크류형 과급기 개발)

  • Bea, Jae-Il;Bae, Sin-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1427-1434
    • /
    • 2003
  • Turbo- or Super-charging has been used to boost engine power for Gasoline- and Diesel Engine since beginning of 20th century. So far turbo-charger has enjoyed a high reputation in the charging field for its technical advantages such as no demand of operation power from engine and an excellent charging effect in a static operation at mid- and high engine speed. A mechanically driven super-charger, however, is now popular due to the high engine power at quick change of the driving mode - high engine torque even at low engine speed. Since super-charger needs operation power from engine, it is difficult to improve its relatively higher fuel consumption than that of turbo-charger. This negative point is still an obstacle to the wide use of supercharger. Super-charger using screw-type compressor will fulfill the purpose to reduce fuel consumption by minimizing operation power owing to no charge at idling or part load driving condition. This study aims to develop power control concept to achieve the minimization of operation power. A screw type super-charger was modified in design partially and installed with an internal bypass valve and a bypass tube to control charging pressure at part load. The various control concepts show a possibility to reduce operation power of super-charger.

Study on the Fuzzy Control of CO2 Heat Pump System (이산화탄소 열펌프 시스템의 퍼지 제어에 관한 연구)

  • Lee, Jae-Seung;Han, Yung-Hee;Kim, Min-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.513-518
    • /
    • 2008
  • In the air-conditioning and refrigeration industry, the efforts to protect the environment have been made. One of them is to use carbon dioxide as an alternative refrigerant, however, several researches have shown that the transcritical heat pump system using $CO_2$ has relatively lower efficiency resulting in a degraded steady-state system performance. Capacity control with fuzzy controller was carried out for $CO_2$ heat pump system. Evaporator secondary fluid outlet temperature was suggested for the control variable of compressor speed modulation.

  • PDF

The Design of a Constant Speed Controller for BUS Air Conditioning System (버스 냉방용 MAIN 엔진 직결 구동 압축기의 정속 회전장치 설계)

  • Kim, Hyung-Woo;Yi, Un-Kun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2582-2584
    • /
    • 2001
  • In this paper, this system which constantly control rotation speed of compressor is designed to use in idling state as traffic jam. Also this system is designed to improve reduction of cooling efficiency when sloping and starting a bus. The estimation of designed system in this paper is performed in the laboratory where KS-R-1053 is satisfied. We come to the conclusion that this system is more excellent than the present system in point of cooing ability and response characteristic of controller.

  • PDF

Preliminary Study of Hybrid Micro Gas Turbine Engine (하이브리드 타입 초소형 가스터빈엔진 개발 및 초도 시운전)

  • Seo, Junhyuk;Choi, Juchan;Kwon, Kilsung;Baek, Jehyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.1
    • /
    • pp.24-30
    • /
    • 2016
  • In this study, a 2W micro-gas turbine engine was designed using micro-electro-mechanical systems (MEMS) technology, and experimental investigations of its potential under actual combustion conditions were performed. A micro-gas turbine (MGT) contains a turbo-charger, combustor, and generator. Compressor and turbine blades, and generator coil were manufactured using MEMS technology. The shaft was supported by a precision computer numerical control (CNC) machined static air bearing, and a permanent magnet was attached to the end of the shaft for generation. A heat transfer analysis found that the cooling effect of the air bearing and compressor was sufficient to cover the combustor's high temperature, which was verified in an actual experiment. The generator performance test showed that it can generate 2W at design rotational speed. Prototype micro-gas turbine generated maximum 1 mW electric power and lasted up to 15 minutes.

Effect of Blade Leading Edge Sweep on the Performance of a High Pressure Centrifugal Compressor Impeller

  • Wang, Hongliang;Xi, Guang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.823-827
    • /
    • 2008
  • The effects of blade leading edge sweep on both the aerodynamic performance and the structure stress of a high pressure centrifugal compressor impeller are numerically investigated. Changes in the flow structure occur as a result of the effect of leading edge sweep on the loading distribution in the tip region. The flow separation is avoided by introducing a sweep of the main blade leading edge and the strength of shock is reduced at the same time. Backswept of the leading edge is found to be beneficial to the impeller performance improving. On the other hand, the structural analysis indicated that high rotating speed of the impeller will cause substantial high bending stresses and radial deflections of the blade. Studies have shown that it is possible to control the stress distribution along the tip and root of the blade by slight adjustments to the sweep angle of the leading edge. These adjustments may be used to design the impeller with lower blade root stress distribution without aerodynamics performance penalty.

  • PDF

Implementation of Linear Motor Piston Amplitude Estimator Using Phase Lag Filter (위상지연필터를 이용한 리니어 모터 피스톤 진폭 추정기의 구현)

  • Oh, Joon-Tae;Kim, Gyu-Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.212-218
    • /
    • 2013
  • In this paper, a linear motor piston amplitude estimator using phase lag filter has been implemented. In order to control the cooling capability of a refrigerator or an air conditioner in which liner compressors are applied, the piston speed should be controlled. The piston speed control can be obtained by adjusting the frequency or the stroke of linear motors. The dynamic performance of linear compressors depends on how accurately the stroke or the piston amplitude is estimated. A linear motor piston amplitude estimator using phase lag filter is proposed and the superior performance of our estimator is verified via some simulation studies.

Idle Quality Optimization Study (공회전시 차량의 소음진동현상의 질적개선에 대한 고찰)

  • ;Norbert Wiehagen
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.342-352
    • /
    • 2003
  • Idle NVH characteristics are one of the most important aspects among the vehicle performances. Vehicle developers are devoted to improve vehicle interior noise and steering wheel and seat vibrations. In order to improve the idle quality, noise and vibration transfer path should be carefully evaluated. Also, effects of various components related to the idle performance should be confirmed. A general procedure for improving the idle qualify is described in detail. The relationship among cylinder pressure characteristics, crankshaft rotational speed variation, and vehicle vibrations is also investigated. Influences of drive shaft, torque converter, air conditioning system, vehicle structure including engine mount system, and idle control parameters on the vehicle idle quality are studied. Weak points of typical vehicles on the idle qualify are identified. Some of improvement measures are proposed and verified.

  • PDF