• 제목/요약/키워드: Compressor piston

검색결과 131건 처리시간 0.03초

냉동${\cdot}$공조용 로터리 콤프레서의 윤활 특성 제2보:베인 선단부의 탄성 유체 윤활 특성 해석 (The lubrication Characteristics of a Rotary Compressor used for Refrigeration and Air-conditioning Systems Park II: Analysis of elastohydrodynamic lubrication on vane tip)

  • 조인성;오석형;정재연
    • Tribology and Lubricants
    • /
    • 제13권1호
    • /
    • pp.62-69
    • /
    • 1997
  • Rapid increase of refrigeration and air-conditioning systems 9r & a systems) in modern industries brings attention to the urgency of research & development as a core technology in the area. And it is required to the compatibility problem of r & a systems to alternative refrigerant for the protection of environment. The, it is requested to study the lubrication characteristics of refrigerant compressor which is the core technology in the r & a systems. The study of lubrication characteristics in the critical sliding component is essential for the design of refrigerant compressor. Therefore, theoretical investigation of the lubrication characteristics of rotary compressor for r & a systems is studied. The newton-Raphson method is used for the EHL analysis between vane and rolling piston in the rotary compressor. The results show that the rotational speed of a shaft and the discharge pressure influence significantly the friction force between vane and rolling piston. This results give important basic data for the further lubrication analysis and design of a rotary compressor.

R410A 로타리 압축기의 토출구 최적설계에 관한 연구 (A Study on the Optimum Design for the Discharge Port of a R410A Rotary Compressor)

  • 김현진;이태진;박신규;황인수
    • 설비공학논문집
    • /
    • 제13권12호
    • /
    • pp.1245-1254
    • /
    • 2001
  • For a R410A-rolling piston type rotary compressor model which was modified by reducing the cylinder height and shaft eccentricity from R22-compressor version, numerical simulation has been carried out and simulation results have been found to be compared fairly well with those of measurements. EER of this first version of R410A compressor was 4.8% lower than that of R22 compressor. To improve the performance of the R410A compressor model, parametric study on the design parameters related to the discharge port system has been performed by using the numerical simulation program, and optimum conditions for the highest EER have been obtained with the aid of Taguchi method. With the optimized discharge port configuration, EER has been improved by 1.7%.

  • PDF

왕복동형 압축기 피스톤의 동적 거동 해석 (Dynamic Behavior Analysis of Reciprocating Compressor Pistons)

  • 김태종
    • 한국소음진동공학회논문집
    • /
    • 제12권9호
    • /
    • pp.717-724
    • /
    • 2002
  • In this study, a numerical analysis for the piston secondary dynamics of small refrigeration reciprocating compressors is performed. In general, the length of cylinder in this class of compressors is shortened to diminish the frictional losses of the piston-cylinder system. So, the contacting length between piston and cylinder wall is in variable with the rotating crank angle around the BDC of the reciprocating piston. In the problem formulation of the piston dynamics, the change in bearing length of the piston and all corresponding forces and moments are considered in order to determine the piston trajectory, velocity and acceleration at each step. A Newton-Raphson procedure was employed in solving the secondary dynamic equations of the piston. The developed computer program can be used to calculate the entire piston trajectory and the hydrodynamic force and moment as functions of crank angle under compressor running conditions. The results explored the effects of the radial clearance, lubricant viscosity, length of the cylinder wall, and pin location on the stability of the piston.

리니어 컴프레서를 위한 파라미터 추정 및 제어 (Parameter Identification and Control for Linear Compressors)

  • 김규식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.243-245
    • /
    • 2006
  • A closed-loop sensorless stroke control system for a linear compressor has been designed. The motor parameters are identified as a function of the piston position and the motor current. They are stored in ROM table and used later for the accurate estimation of piston position. Also it was attempted to approximate the identified motor parameters to the 2nd-order surface functions. Some experimental results are given in order to show the feasibility of the proposed control schemes for linear compressors.

  • PDF

싱글 로터리 컴프레셔의 온라인 부하 토크리플 보상기 (Online Load Torque Ripple Compensator for Single Rolling Piston Compressor)

  • 구본관
    • 전력전자학회논문지
    • /
    • 제19권5호
    • /
    • pp.457-462
    • /
    • 2014
  • Given their low cost, single rolling piston compressors (SRPC) are utilized in low-power room air-conditioning systems. The SRPC cycle is composed of one compression and discharge process per mechanical rotation. The load torque is high during the compression process of the refrigerants and low during the discharge process of the refrigerants. This load torque variation induces a speed ripple and severe vibration, which cause fatigue failures in the pipes and compressor parts, particularly under low-speed conditions. To reduce the vibration, the compressor usually operates at a high-speed range, where the rotor and piston inertia reduce the vibration. At a low speed, a predefined feed-forward load torque compensator is used to minimize the speed ripple and vibration. However, given that the load torque varies with temperature, pressure, and speed, a predefined load torque table based on one operating condition is not appropriate. This study proposes an online load torque compensator for SRPC. The proposed method utilizes the speed ripple as a load torque ripple factor. The speed ripple is transformed into a frequency domain and compensates each frequency harmonic term in an independent feed-forward manner. Experimental results are presented to verify the proposed method.

휴대용 냉동기 적용을 위한 소형 냉동컴프레서 개발 및 기본 성능에 관한 연구 (Development of a Compact Refrigeration Compressor and the Study of Basic Performance for Portable Refrigerator)

  • 장준영;김영준;남연우
    • 설비공학논문집
    • /
    • 제24권5호
    • /
    • pp.385-390
    • /
    • 2012
  • This paper discusses the applicability of a compact rolling piston refrigeration compressor to portable refrigerators. The capacity of this compressor is 1 cc. Using a 12 V BLDC motor, the compressor is driven from 2500 rpm to 6000 rpm. The height of the compression module and motor is approximately 56 mm, and their weight is approximately 374 g. We confirmed the effective operation of the compressor components by evaluating their compression and cooling performance.

스러스트 볼 베어링이 적용된 왕복동형 압축기의 마찰손실 해석 (Frictional Loss Analysis of a Reciprocating Compressor with Thrust Ball Bearing)

  • 김태종
    • Tribology and Lubricants
    • /
    • 제27권2호
    • /
    • pp.101-108
    • /
    • 2011
  • In this paper, a study on the frictional losses and dynamic behaviors of a reciprocating compression mechanism used in small refrigeration compressor is performed. In the problem formulation of the compressor dynamics, the viscous frictional force between piston and cylinder wall is considered in order to determine the coupled dynamic behaviors of piston and crankshaft supported on a thrust ball bearing. The solutions of the equations of motion of the reciprocating mechanism along with the time dependent Reynolds equations for the lubricating film between piston and cylinder wall and lubricant films of the journal bearings are obtained simultaneously. The hydrodynamic forces of journal bearings are calculated using finite bearing model and G$\hat{u}$m-bel boundary condition. And, a Newton-Raphson procedure was employed in solving the nonlinear equations of piston and crankshaft with a thrust ball bearing. The results explored the effects of design parameters on the frictional losses and dynamic stability of the compression mechanism.

그루브 위치가 리니어 압축기용 피스톤과 실린더의 윤활특성에 미치는 영향 (Influence of Groove Location on Lubrication Characteristics of the Piston and Cylinder in a Linear Compressor)

  • 전우주;손상익;이혁;김정우;김경웅
    • Tribology and Lubricants
    • /
    • 제32권1호
    • /
    • pp.24-31
    • /
    • 2016
  • In this paper hydrodynamic lubrication analysis is carried out to investigate the effects of groove location on the lubrication performance of a piston and cylinder system in a linear compressor. The rectangle shaped grooves having a constant groove depth and width are applied on the lubrication area of the piston. The Universal Reynolds equation is used to calculate the oil film pressure, and the Elrod algorithm with the finite different method is used to solve the governing equation. The JFO boundary condition is applied to predict cavitation regions. Transient analysis for different locations of the grooves on the piston is carried out using the typical operating condition of the linear compressor in order to estimate the variations of frictional power losses and minimum film thicknesses. When the grooves are applied on the lubrication area, both the frictional power loss and the minimum film thickness decrease. The frictional power loss can be reduced effectively, while maintaining a minimum film thickness to enable the piston operation without direct contact with the cylinder surface, by means of choosing a proper location of the grooves. The optimum location of the grooves to improve a lubrication performance depends on the operation condition or the system requirements specification.

맥동관 엔진의 구현 가능성에 대한 연구 (Investigation on feasibility of pulse tube engine)

  • 기태경;정상권
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제14권1호
    • /
    • pp.34-37
    • /
    • 2012
  • In this paper, configurations and performance of a pulse tube engine (PTE) are investigated. The configuration of PTE is basically designed by using a concept of energy flow. The configurations of PTE are classified as a PTE with two pistons and a PTE with one piston. First, the PTE with two pistons is simulated and the Carnot efficiency is about 41 %. The phase difference of between motion of two pistons located at expander and compressor mainly effects the performance of the PTE. Second, the PTE with one piston is designed. From a concept of analogy, the piston of compressor is replaced by a compliance tube and a resonator. The PTE with one piston is identical with a thermoacousic engine and has the large volume because the compliance tube and resonator are consisted of large volume tubes. Therefore, we will consider each usefulness of the compact PTE with two pistons and the huge PTE with one piston for PTE applications and the judgement of feasibility.

다이아프램식 수소압축기의 캐비티 내 압력특성 변화에 관한 실험적 연구 (A Experimental Study on a Pressure Variation in the Cavity of Hydrogen Diaphragm Compressor)

  • 신영일;박현우;이영준;송주헌;장영준;전충환
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.769-772
    • /
    • 2009
  • Diaphragm compressors are used for a hydrogen compression because it can achieve high gas pressure with high purity. But diaphragm's lifetime may depend on the shape of the cavity and deflection from fluctuation the pressure change, which is necessary to monitored. In this study, the gas and hydraulic oil pressure in the cavity were measured as piston speed varies for diaphragm compressor. The results show pressure change quantities were reduced and maximum pressure points are delayed as the piston moves faster. And the hydraulic pressure were elevated as gas pressure elevated. And the compression period was more faster than expansion period.

  • PDF